

Urban Logistics Routing Problems:
Analysis of Heuristic Methods

Masterarbeit

zur Erlangung des akademischen Grades “Master of Science (M. Sc.)“
im Studiengang Wirtschaftswissenschaft der

Wirtschaftswissenschaftlichen Fakultät der Leibniz Universität Hannover

vorgelegt von

Name: Igler Vorname: Jonathan Christopher
Geb. am: 10.10.1993 in: München, Deutschland

Prüfer: Prof. Dr. Michael H. Breitner

Hannover, den 30. September 2019

Abstract

This paper gives an overview of the recent problems that arose in the field of urban
logistics focusing on the methods proposed to solve these problems. For this purpose,
we introduce several exact methods, (meta-)heuristics, learnheuristics and hybridizations
in a unified fashion. We especially stress the importance of recently proposed state-of-
the-art machine learning methods incorporating crucial methods of Artificial Intelligence.
Further, we propose a new classification scheme for the categorization of heuristics. This
scheme is more extensive and provides more diversification dimensions than common in
the current literature.
In both a large-scale simulation study and an application on real word data, we im-
plemented major representative methods of each class in order to be able to make a
comparative analysis. Building upon our results, we point out the inefficiency of exact
methods as well as the power of a new hybrid, the Gnowee algorithm.
Moreover, we showe that learnheuristics generalize well by incorporating training of meta-
heuristics for a specified problem. Because of their huge potential, they are fast developing
and promise steep progress for future research.
To provide an outlook on future research, we eventually identify prospective challenges
facing urban logistics such as an increasing environmental awareness, industry 4.0 and
Internet of Things. We hereby stress the social drift to a data-driven society and the
opportunities green industry provides urban entrepreneurs.

Key Words: Logistic Problems, Urban Logistics, Combinatorial Optimization, Graph
Theory, Heuristics, Metaheuristics, Hybrid Heuristics, Learnheuristics, Machine Learning,
Neural Networks, Industry 4.0

Acknowledgments

This dissertation has been a journey and I thank everyone who supported me during the
whole time. Special thanks go to Marc Sonneberg for guiding me in the creation process.
I would also like to thank Professor Breitner for the possibility to write this dissertation
and the inspiration of this research.
I extend my sincerest acknowledgment to all my lecturers at Leibniz University Hanover
for their previous assistance, scholarly knowledge and enthusiasm.
Last but not least, I would like to express my indebtedness to colleagues and family who
never stopped believing in me and helped me by proof-reading this extensive research
piece. Special thanks go to my girlfriend for all her love and support.

CONTENTS

Contents
List of Tables I

List of Figures II

Glossary III

1 Introduction and Motivation 1
1.1 A Machine Learning View on Logistic Solutions 1
1.2 Aim of this Paper . 2
1.3 Thesis Structure . 3

2 Research Design 4

3 Combinatorial Optimization Problems 6

4 Introduction to Logistics Problems 8
4.1 Relation to Graph Theory . 11
4.2 Traveling Salesman Problem . 12
4.3 Vehicle Routing Problem . 14
4.4 Facility Location Problem . 16
4.5 Location Routing Problem . 17
4.6 Single Shortest Path Problem . 18

5 Exact Methods 20
5.1 Branch-and-Bound Methods . 20
5.2 Branch-and-Cut Methods . 22

6 Heuristics 26
6.1 Constructive Heuristics . 28
6.2 Improvement Heuristics . 30

7 Classification Scheme 37

8 Metaheuristics 40
8.1 Introduction and Basic Notations . 41
8.2 Individual-based Metaheuristics . 43
8.3 Population-based Metaheuristics . 54

9 Hybrids 68
9.1 Collaborative Hybrids . 68
9.2 Integrative Hybrids . 70
9.3 Other Hybrids . 71
9.4 Gnowee . 71
9.5 Concluding Remarks . 72

10 Statistical Learning Methods 74
10.1 Machine Learning . 74
10.2 Reinforcement Learning . 75
10.3 Ant-Q . 75

11 Learnheuristics 78

CONTENTS

11.1 Hyperheuristics . 79
11.2 Specifically-located Hybridizations . 80
11.3 Neural Networks for Learnheuristics . 81

12 Experimental Setup 84
12.1 Problem Definition . 84
12.2 Dataset . 84
12.3 Methods . 87
12.4 Evaluation Criteria . 87
12.5 Further Implementation Details . 88

13 Results 89
13.1 Simulated Data . 89
13.2 Real World Dataset . 93

14 Discussion 97

15 Future Challenges and Opportunities in Urban Logistics 99

16 Conclusion 101
16.1 Results . 101
16.2 Outlook . 102

References 104

A Appendix 118

B Code 122
B.1 simulate_graphs.py . 122
B.2 extract_API.py . 124
B.3 bnc.py . 128
B.4 OR_tools.py . 130
B.5 show_OR_tools_results.py . 135
B.6 aco.py . 138
B.7 run_gnowee.py . 140
B.8 learnheuristic.py . 144
B.9 requirements.txt . 145

Ehrenwörtliche Erklärung 149

LIST OF TABLES

List of Tables

2 Methodology as proposed by Peffers et al. (2007) for our own framework . 5

3 Examples for Collaborative Hybrids . 70

4 Examples for Integrative Hybrids . 71

5 Key differences between global and specifical hybrids of ML and (meta-
)heuristics . 81

6 Average computational time in seconds for solving the TSP on the simu-
lated data . 90

7 Average total distance in kilometers for the TSP on the simulated data . . 90

8 Ranking on the simulated dataset . 93

9 Longest traveling time of a single path in seconds on the real world dataset 95

10 Ranking on the real world dataset . 96

11 Notations . 118

12 Literature categorization . 119

13 Comparison between exploitation and exploration of the solution space
between Heuristics . 120

14 Comparison between exploitation and exploration of the solution space
between Metaheuristics . 121

I

LIST OF FIGURES

List of Figures

1 The development of urbanization in Germany and the European Union . . 9

2 Graph theory exposed . 12

3 Methodology on one branch of the BnB . 22

4 Methodology of Nearest Neighborhood Search 30

5 Methodology of the 2-opt Lin-Kerningham algorithm 35

6 Classification of (meta-)heuristics proposed by us 38

7 Levels of different solvers . 40

8 Methodology of individual-based approaches 43

9 Methodology of Local Search algorithms 44

10 Guided Local Search escaping local minima 46

11 Methodology of Tabu Search algorithms 48

12 Generating a partial solution . 50

13 Methodology behind Evolutionary Computation 56

14 Methodology of PSO . 58

15 Ant Movement . 61

16 Methodology of ACO . 63

17 Methodology of ABC . 66

18 Methodology of Multi-stage Collaborative Hybrids 69

19 Methodology of Sequential Collaborative Hybrids 69

20 Methodology of Parallel Collaborative Hybrids 69

21 Methodology of Full Manipulation Integrative Hybrids 70

22 Methodology of Partial Manipulation Integrative Hybrids 71

23 Methodology of Hyperheuristics . 80

24 Location of Hanover universities in a map extracted from Google Maps . . 86

25 Optimal route computed by the Tabu Search algorithm for an exemplary
simulated graph with ten nodes . 89

26 Relationships between longest distance taken by one vehicle on the simu-
lated dataset and number of nodes of the graph for most important methods 92

27 Relationships between computational time in elapsed seconds for training
on the simulated dataset and number of nodes of the graph 93

28 Time needed for the longest tour on the real world dataset 94

29 Computational time of algorithms on the real world dataset 95

II

Glossary

Glossary

ABC Artificial Bee Colony.
ACO Ant Colony Optimization.
BnB Branch-and-Bound.
BnC Branch-and-Cut.
GLS Guided Local Search.
LSTM Long Short Term Memory.
ML Machine Learning.
NN Neural Network.
PSO Particle Swarm Optimization.
RNN Recurrent Neural Network.
SA Simulated Annealing.
TSP Traveling Salesman Problem.
VRP Vehicle Routing Problem.

III

1. INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

With the rise of online trading and the resulting merchandise respectively personal move-
ments, urban logistics problems become ubiquitous optimization problems nearly all mod-
ern enterprises have to deal with. The approach to logistics determines crucially the
effectiveness of economic action. No matter whether a food delivery provider wants to
maximize the occupancy rate of his drivers, courier express parcel service providers aim
to minimize costs or the growing urban population necessitates more efficient waste col-
lection, logistic challenges require optimization. Urban logistics, thereby, deal especially
with the transport of goods in the business-to-consumer relationship. The urban last
mile delivery counts towards the most expensive piece in the supply chain because of high
personnel costs (Gevaers et al., 2009).

Especially in times of big data and of a social shift to a more data-driven culture, such
optimizations cannot be solved exactly in a reasonable amount of time. The need for
fast approximate procedures arises. This becomes even more imminent as a result to the
increasingly complex environment these companies operate in, the mounting economic
pressure and the growing customer demands. Consequently, couriers, food deliverers and
waste disposal companies as well as all other businesses operating in urban areas introduce
automate logistical concepts for distance minimization (Van Audenhove et al., 2015).

This development makes the following research question necessary:

How do approximate methods compare for solving urban logistics problems?

This question can be further subdivided into the following issues.

• What are approximate methods companies could use to solve their logistic related
questions?

• How does the performance of the methods compare?

• Is there a best logistic optimization concept?

• What are future challenges logistic concepts will face?

1.1 A Machine Learning View on Logistic Solutions

One possible way to solve such problems is by the use of machine learning, to be more
specific the sub-area of reinforcement learning. Reinforcement learning methods solve
optimization problems by letting an agent learn the effects his actions have on the objective
function (Birattari, 2004).

1

1. INTRODUCTION AND MOTIVATION

Heuristics were already proposed in the bygone century to tackle these kinds of problems.
However, they provide us with merely good initial guesses for not more than specific
tasks. The surge of literature on metaheuristics, which can be tailored to solve any
optimization problem, can be explained by the demand for more general approximate
procedures (Osman and Kelly, 1996).

Metaheuristics explore the large solution search space of optimization problems by re-
stricting the effective size of the search space and sifting through it efficiently, often
mimicking natural phenomena. In the case of logistics problems, this means that some
possible routes are just neglected and other (more likely optimal) routes are improved
iteratively. As a result, these methods are not only flexible and robust, but also scalable
and fast (Blum and Roli, 2003).

Nevertheless, most of the introduced optimization algorithms have been proposed decades
ago. Since then new developments such as a fourth industrial revolution have changed
the environment in which urban routing problems are supposed to be solved sustainably.
Industry 4.0 and the Internet of Things impose new challenges, but also opportunities in
the field of logistics. For example, the latter provides us with real time information on
consumer demand and workflows (Van Audenhove et al., 2015).

In order to train such more complicated models, learnheuristics have been introduced.
While traditional metaheuristics only build upon reinforcement learning, learnheuristics
also incorporate elements of supervised machine learning. The idea is to learn heuristics
to make them even more general and less susceptible to local optima.

1.2 Aim of this Paper

Addressing the lack of literature summarizing the recent developments in the field of
logistics problems and comparing the performance of diverse optimization algorithms, this
paper aims to provide a thorough review of the available methodology to tackle modern
logistics. In particular, we will highlight the surge of metaheuristics for solving routing
problems and elaborate on a contrasting juxtaposition of these algorithms, namely exact
methods and heuristics. It is important to note that a vast amount of relevant methods is
proposed every year. While we exemplary present some recently proposed state-of-the-art
machine learning models, we cannot cover all algorithms, but carefully choose the most
important, diverse and representative ones to be presented in the remaining part of this
paper.

We aim to provide a unified view on the algorithms by presenting their implementation
using either pseudo code or visualizations based on the presentation of business processes
in order to increase the transparency and the comparability across methods. Further, we

2

1. INTRODUCTION AND MOTIVATION

introduce a new framework for classification of optimization methods for solving especially
urban logistics problems.

In both a large-scale simulation study and an empirical evaluation, we contrast the par-
ticularities of the most renown optimization techniques. Our code is made available in an
online GitHub repository.

Last but not least, we address future challenges and opportunities a change in consumer
behavior, environmental awareness, Internet of Things and Industry 4.0 provide us with.
All in all, we aim to address all the research questions listed above.

Among the main contributions of this thesis are especially

• the introduction of a new framework of classification of heuristics,

• the review of the most important such algorithms and

• the implementation of a large scale simulation study for a thorough performance
analysis and comparison across methods in Python.

We base our results mainly on papers published in well-known journals and topic-specific
books, but also on internet articles. We included websites as jstor, elsevier or Springer
Link for the research of relevant literature. Journals such as Operations Research, Journal
of Optimization Theory and Applications and Advanced Science and Technology Letters
among others were then taken into consideration. We especially focused to present recently
proposed methods, such as Gnowee which was only published in 2019, in order to capture
the most state-of-the-arts algorithms from artificial intelligence.

1.3 Thesis Structure

The remainder of the paper is structured as follows. We start by summarizing related work
in Section 2. We then introduce the common approach to solving logistics problem by
referring to the design science research concepts used in this paper in Section 2. In Section
3, we provide the reader with the preliminaries needed for the understanding of Section 4,
the urban logistics optimization problems. In the following sections, we introduce several
solution concepts and classify them. We also present recently proposed learnheuristics
which build upon neural networks, a popular method in artificial intelligence. After
elaborating on our experimental setup in Section 12, the subsequent part discusses our
results. The last section concludes and proposes future directions for research.

3

2. RESEARCH DESIGN

2 Research Design

Design Science provides research with guidelines for evaluation. The design cycle is an
iterative process that uses several loops and revises developed design artifacts (Van Aken,
2005).

The research of this thesis is based on design science techniques developed by Hevner
and Chatterjee (2010) and Van Aken (2005). Through the publications of Hevner and
Chatterjee (2010) and Peffers et al. (2007) describing the framework of design science
research, this methodology gained on international acceptance (Gregor and Hevner, 2013).
The corresponding concepts are then used in order to attain the best results possible
during both the building and evaluation of the methods or implementations (Frauchiger,
2017). In our work, this will be consisting in the usage of different exact methods and
(meta-)heuristics.

In the following, Hevner and Chatterjee (2010) propose a framework to classify the un-
derlying methods and three intertwined cycles to be attended in order to attain the best
results possible. Those need to be clearly identifiable and will thus be presented in the
following, taking our own work into consideration:

• The Relevance cycle bridges the contextual environment of the research project
with the design science activities.

• The Design cycle iterates between the core activities of building and evaluating
the design artifacts and processes of the research.

• The Rigor cycle connects the design science activities with the knowledge base of
scientific foundations, experience and expertise that informs the research project.

Since Hevner and Chatterjee (2010) do not propose a methodology itself but solely a
framework, we will further examine the methodology provided by Peffers et al. (2007) as
shown in Table 2 on the following page.

Furthermore, our literature overview is based on the methodology proposed by Webster
and Watson (2002). Accordingly, our review of relevant work was obtained in three stages,
elucidated in the following.

The first step required using key words from the definitions of ’Urban Logistics’ and
’Heuristics’. We queried databases of all kinds in order to obtain titles and additional key
words, setting no period restriction.

In the following we implemented the work cited in the found journals and articles in order
to redeem more information and knowledge. For this we made use of books and already

4

2. RESEARCH DESIGN

Step Section Description
Problem Identification Sections 1 and 4 Problem description con-

cerning congestions of ur-
ban areas as well as the
need in solving such

Defining Objectives of a So-
lution

Section 1.2 Description of both, so-
lutions needed and qual-
ity indicators, in order to
increase transparency and
comparability

Design and Development Sections 6, 8, 9 and 11 Exposition of the past,
present and future in
solvers for the problems
defined earlier

Demonstration Section 12 Setting up our empiri-
cal study, describing the
dataset and the methodol-
ogy

Evaluation Section 14 Discussion of the results
obtained in the empirical
study, comparing the re-
sults obtained by the re-
spective methods

Communication Whole dissertation, mainly
Section 15

Structuring the results and
taking our conclusions, in-
cluding an outlook for fur-
ther research

Table 2: Methodology as proposed by Peffers et al. (2007) for our own framework

existent literature reviews, such as Toth and Vigo (2002). The last step consisted in
finding the actuality of the problem by scavenging newspaper articles and websites.

From this systematic and comprehensive search we could redeem a total of 201 articles all
listed in the Section References. Please refer to the Tables 12 on page 119 in the appendix
for further insights.

For illustration purposes, we followed the presentation of business processes and visualized
more complex methodology as a flowchart in a sequence of commands. Thereby, actions
are put in squircles, while events are presented in hexahedron. Simpler methods were
then explained via pseudo code.

5

3. COMBINATORIAL OPTIMIZATION PROBLEMS

3 Combinatorial Optimization Problems

Basically, combinatorial optimization problems consist in problems with the goal to find
a best solution out of a large but finite amount of possible solutions Consoli and Darby-
Dowman (2006).

Further, we can distinguish between two groups: problems consisting of continuous and
problems consisting of discrete variables. For this dissertation, we shall only consider the
latter one. The main goal is then to minimize or to maximize a given objective function
under certain restrictions also referred to as constraints (Neumann and Witt, 2010). For
the following, we advise the reader to refer to Table 11 on page 118 for a summarized
view on the notations used in this work.

Formally, we define a triple (S, f,Ω) as a combinatorial optimization problem where S

denotes a given search space, f an objective function to be maximized or minimized and
the set of constraints Ω (Gendreau and Potvin, 2005).

Any optimal solution s ∈ S is a solution that fulfills the above mentioned constraints Ω.
To access the quality of this solution we compare the values obtained with the underlying
objective function f . Dependent on the problem a high value (for maximization problems)
or a low value (for minimization problems) stands for better quality. Once we find no more
higher or lower values, this solution is called a globally optimal solution smax. The finding
of this one is main element of combinatorial optimization problems (Papadimitriou, 2003).

Furthermore, the computational complexity theory founded by Cook (1971) was developed
to categorize the computational requirements of algorithms in order to be able to classify
the problem. We differentiate ”easy” and ”hard” computational problems (Ausiello et al.,
2012). This classification is done in order to find the best suitable algorithm of the
respective problem. The complexity of a method is then found by the upper bound of its
asymptotic behavior.

The most widely used measure for this classification is the computational time, which
measures the time needed for an algorithm to come up with a solution. The computa-
tional time is often assumed to be proportional to the amount of elementary operations
the respective algorithm executes. The latter is typically expressed with respect to the
problem’s input size, hereby denoted by n (Papadimitriou, 2003).

We formalize time-complexity as follows. Let f, g : N → N. Then f(n) ∈ O(g(n)) if
positive and natural numbers c and n0 exist such that for all n ≥ n0 we have f(n) ≤ c·g(n).
In words, we say that f(n) ∈ O(g(n)) if it can be asymptotically bounded by c · g(n).
This definition of the limiting behavior of a function is also referred to as big O-notation
(Floudas and Pardalos, 2016).

6

3. COMBINATORIAL OPTIMIZATION PROBLEMS

An algorithm is then considered to be polynomial or efficient if its time complexity is in
O(p(n)) where p(n) is polynomial. If it is not possible to express p(n) as a polynomial
function, the algorithm is considered exponential or also inefficient (Floudas and Pardalos,
2016).

We can further differentiate between two types of complexity classes. A problem is said to
be in P iff it is solvable in polynomial time. In contrast, NP (nondeterministic polynomial
time) denotes the set of all decision problems to which the validity of a solution can be
assessed in polynomial time. It is, therefore, not necessary that the solution is computable
in polynomial time (Neumann and Witt, 2010).

According to Neumann and Witt (2010), we define a problem to be NP-hard ”if it is at
least as difficult as any problem in NP”. The problem does neither have to be in NP nor
does it have to be a decision problem at all. What is more, we say a problem A reduces
to a problem B if problem A can be transformed into problem B in polynomial time.
Consequently, a problem is NP-hard if every problem in NP can be reduced to it.

If one NP-hard problem can be shown to be efficiently solvable, this implies that every
single problem in NP is solvable. The P = NP problem is one of the seven Millennium
Prize Problems, each of which is rewarded with a $1,000,000 prize for its first correct
solution. The question is whether all NP problems are also in P and vice versa (Carlson
et al., 2006).

The problems encountered in this dissertation belong all to the class of NP-hard problems
(Dethloff, 2001). Furthermore, we only analyze decision problems. These are problems
to which a solution can either be correct or incorrect. The traveling salesmen problem,
”What is the shortest route between all cities?”, is for instance solvable and thus a decision
problem (Floudas and Pardalos, 2016).

7

4. INTRODUCTION TO LOGISTICS PROBLEMS

4 Introduction to Logistics Problems

The European Commission (2013) defines urban logistics as ’...the movement of goods,
equipment and waste into, out, from, within or through an urban area’. To be more
specific, the term ’urban logistics’ can be split into the terms logistics and urban.

Literature provides us with many different definitions of the term logistics. In our paper,
we follow the ’seven rights of logistics’ proposed by Plowman. According to this definition,
logistics should ensure the availability of the

... the right product

... in the right quantity

... in the right condition

... in the right location

... at the right time

... for the right customer

... at the right costs (Plowman, 1962).

The production of the goods is neglected in this definition. This means that logistics
only deals with the transportation of the inputs into the factory and the transportation
of the resulting outputs to the customer. Coherent with the worldwide phenomena of a
growing population and the concentration of the latter in urban areas, the so called urban
logistics problems arise. Those are commonly defined through the growing of cities and
importance of travel within these areas (Mulligan, 2006).

Urbanization is defined as the bilateral growth of cities with respect to their area and
population size (Gebski et al., 2018). Recent extrapolation resulted in the following
numbers: Nowadays, around 52% of the worldwide population inhabits urban areas, a
number which will rise to 64% until the 2050s. The same development is to be expected
for the travel within such urban areas which occupy around 64% of the total amount of
movement kilometers. The expected rise in this case is expected to be at a level of around
300% until 2050 (Van Audenhove et al., 2015).

A possible explanation could lie in the general assumption of both better living and
working conditions in such urban areas. Further benefits lie in the improved public supply
of electricity, gas and water (Mulligan, 2006).

But not only the moving towards greater urban areas is therefore a problem on the rise for
operation research: Further, the demand for goods increases, also related to the growing

8

4. INTRODUCTION TO LOGISTICS PROBLEMS

trend of e-commerce, the number one driver of urban good delivery (Inninger, 2019). A
recent study from the “Bundesverband Paket und Expresslogistik“ expects a continuous
rise in the amount of parcels of up to 4 billion within the following 4 years (Paket und
Expresslogistik e. V., 2019). This increase happens on both sides, B2C and B2B whereas
the former takes up both, in relative and absolute terms, the greater amount in parcel
distribution.

Figure 1: The development of urbanization in Germany and the European Union

The inflating urban population increases the complexity of logistical problems in the most
diverse economic sectors, as seen in Figure 11. For example, municipal waste management
systems had to be re-developed and adjusted to the greater, more densely living population
(Bányai et al., 2019). Furthermore, more and more supermarkets offer delivery services
such that not only meals, but also groceries can be conveniently delivered to the house
doors of the customers (Gebski et al., 2018).

All in all, this implies that more vehicles traverse already congested urban areas, increasing
not only the traffic flow itself, but worsen traffic safety, air pollution, noise and therefore
quality of life (Kalnay and Cai (2003), Grimm et al. (2008)).

Recent research has balanced pollution caused by airplanes for the first time on the top

1Data retrieved from Worldbank (2019).

9

4. INTRODUCTION TO LOGISTICS PROBLEMS

ten list of environmental damaging causes in Germany in 2018 (Bann, 2019). Apart from
passenger transportation, aeronautics is being used to transport goods, on the rise due to
the reasons cited before.

For this, public authorities, transportation firms and retailers, the main stakeholders of
urban logistics, see their objectives in the reduction of congestion, amount of cars and
trucks in the city, pollution (including CO2), noise, as well as conservation of energy and
development of local retail and housing policies, caused mainly by the increasing urban
population (Meixell and Luoma, 2015). The pressure upon those stakeholders increases
upon international agreements and protocols, such as the Kyoto protocol or the most
recently established Paris agreement (UNFCCC, 2018).

Nonetheless, these stakeholders stand in conflict to each other, resulting from the different
goals each one of them tries to achieve (Taniguchi and Van Der Heijden, 2000). Public
authorities seize to maximize public utility a goal which is not coherent to the remaining
stakeholders who aim to maximize their respective economic wealth by looking only at the
relevant costs. Furthermore, the limited possibilities of control make a possible solution
finding difficult. While public authorities may only establish regulations, as the recent
bans of Diesel-powered vehicles in various German cities, only transportation firms and
retailers are in fact able to control the vehicle flow itself (Clarissa, 2019).

As pointed out by Reiche (2019), German transportation firms switch usual trucks for
vans, in order to elude tolls and the mandatory breaks, imposed by law for truck drivers.
By this, not only safety issues arise but also increases in vehicles in the already congested
and polluted urban areas.

Transportation firms and retailers see it as mandatory to satisfy the increasing demands of
all kinds. For this it is utterly important to be able to link the different kinds of processes
and activities which result in products and services delivered to a final customer (Sachan
and Datta, 2005). This is also known as supply chain.

Inside the field of supply chains the problems of the last mile logistics have our main focus.
This section is a problem for both, demand and supply side. Within this problem setting,
we look at the last part of the delivery of goods up to the front door of the respective
client. In other words, the main focus lies on the planning of parcel services which need
to satisfy the increased customer demands, the changed behavior of the latter and the
promises to be kept made by e-commerce such as “same day delivery“ (Punakivi et al.,
2001).

A possible solution would be in tying the separate and individual demands, in order
to plan for efficient delivery routes and obtain the lowest transportation costs possible.
Additionally there exists the risk of the customer not to be present such that the delivery

10

4. INTRODUCTION TO LOGISTICS PROBLEMS

service has to return the order postponing the delivery to another point in time causing
additional costs. Possible solutions lie in the construction of parcel shop networks which
allow the delivery to certain hot spots allowing the customer to be responsible for the
successful conclusion of the last mile Song et al. (2009). Another approach would be an
improved communication between the customer and the parcel service via apps.

Being the base for the field of operations research, we saw that logistics problems lie
within packing and routing problems as well as production scheduling and planning, or
decisions over the location of production sites. One of the first problems to appear was
the so called Fermat-Torricelli problem in 1636 (Hazewinkel, 2001). In this we take three
points as given and shall define a fourth one which has the minimum distance to the three
ex-ante defined ones. Even though this problem seems to be out of date, its validation
still holds since we could transport this problem to the real world in a situation where we
have three demand locations which need to be supplied by a depot to be built.

After a short introduction to graph theory we will be introducing the most prominent
examples for logistics problems, which are still topics in recent research.

4.1 Relation to Graph Theory

Logistic problems can be simplified to graph theoretical problems: We can interpret the
geographical location under consideration as a graph G with its nodes v1, ..., vn for some
finite n ∈ N representing the different stops and (vi, vj) denoting the edge between stops
vi and vj where i ̸= j and i, j ∈ 1, ...n. The problems tackled in this work will most often
be represented as graphs.

Graphs are uniquely defined by their set of nodes V = {v1, ..., vn} and their set of edges
E (West et al., 1996). We let m denote the number of edges |E|. If there are no further
attributes, we can thus write G = (V,E). The graph can also be written as the adjacency
matrix A with its ith row and jth column equal to 1 if (vi, vj) is in E and zero otherwise.

Please refer to Figure 2 on the following page for an exemplary model of a routing problem
as a graph. Let us further assume the letters [A,B,C,D,E, F] denote cities and the
exemplary distances between those cities is given in meters. One exemplary tour, e.g.
[A−B−F−E−D−C−A] with a total distance of 90+120+180+100+200+44 = 836m.
This is only one possibility out of many. The goal is now to minimize the cost and make
this route setting more efficient.

In the case of logistics problems it is also possible to assign weight parameters to the edges.

11

4. INTRODUCTION TO LOGISTICS PROBLEMS

The weight wi,j between nodes vi and vj

could denote the distance between the cor-
responding stops. If we let W denote the
matrix with edge weight wi,j in its ith row
and jth column if vi and vj are linked and
zero otherwise. In this case, we write G =

(D,E,W).
Another extension to allow for node features.
Each vertex vi ∈ V can be assigned a (possi-
bly Euclidean) vector or single number. Figure 2: Graph theory exposed

This number can among others stand for a service time that is the time we stay at a stop
before continuing.

We further note that this framework allows to present directed as well as un-directed
graphs: in un-directed graphs the edge (vi, vj) is only in E if (vj, vi) is in E. In this case,
the adjacency matrix is symmetric. In directed graphs, we also allow for asymmetric
adjacency matrices. While un-directed graphs could represent foot paths between stalls
on a market, directed graphs can additionally represent the street map of a city with
one-way streets (Dethloff, 2001).

4.2 Traveling Salesman Problem

This problem has its origin in both the Seven Bridges of Königsberg proposed by Euler
(Euler, 1741) and the Icosian Game by Hamilton (Pegg Jr, 2009).

The former has its origin in a small German city which is divided into five areas which
are then connected by seven bridges. The underlying question is now if it was possible
to walk through the city crossing all bridges only once and to then return to the starting
point. Euler himself affirmed this problem to be unsolvable in this special case (Euler,
1741).

In graph theoretical terms, the bridges represent edges and the five areas are nodes. This
problem is also known as the search for a Eulerian trail. This describes a closed trail which
visits each edge of the given graph exactly once. It can be shown that such a Eulerian
trail exists only for Eulerian graphs. Those are described as graphs where all nodes have
an even degree (Euler, 1953). The degree of a node is the number of its neighbors. Since
the number of edges in the problem of the Seven Bridges of Königsberg is uneven, there
is apparently no solution to this question.

Another variation of the Traveling Salesman Problem (further denoted as TSP) is the

12

4. INTRODUCTION TO LOGISTICS PROBLEMS

so called ’Icosian game’. This is a board game which is made up by a wooden board
picked with holes. These are connected via segments. The game is about placing the
pieces numbered from one to twenty in such a way that two consecutive pieces as well as
the initial and end piece are connected by an edge (Pegg Jr, 2009). In graph theoretical
terms, we refer to the solution as the so-called Hamiltonian cycle that specifies a path
where each vertex is visited exactly once.

These two examples describe different views on the same problem setting: the TSP. As
we have seen, it can be regarded from an arc-oriented view as in the Seven Bridges of
Königsberg but also from a node-oriented view as in the Icosian game (Johnson and
McGeoch, 1997).

The TSP is a non-polynomial problem with easy formulation, but difficult and vast solving
process Kruskal (1956). Let a set I = {1, ..., n} indexing n ∈ N locations such as cities be
given. The salesman has to visit all of those cities starting from a fixed starting point to
which he has to return in the end. Such a path is called tour or in terms of graph theory
cycle.

Traveling from city i to city j, i.e. traversing the edge connecting nodes i and j, the
traveling salesman incurs a cost of ci,j, ∀i, j ∈ I. The goal is to minimize these travel
costs along his route, a.k.a. the distance traveled. Let further Ii,j be the indicator function,
being equal to 1 if the salesman travels from city i directly to city j and 0 otherwise. Let
di > 0 for i ∈ I further denote the positive demand of city i for the goods the traveling
salesman sells.

The problem can then be summarized by the following formulas

Objective function: Min
∑
i∈I

∑
j∈I

ci,j × Ii,j (4.1)∑
j∈I

Ii,j = 1,∀i ∈ I (4.2)

∑
i∈I

Ii,j = 1,∀j ∈ I (4.3)∑
i∈S

∑
j∈S

Ii,j ≤ Card(J)− 1,∀S ⊂ I, 1 ≤ Card(J) ≤ |n
2
| (4.4)

Equations 4.2 and 4.3 denote that each city has to be visited once, by departing from
another city. Let Card further denote the cardinality of the equation which is defined
as a measure of the elements im the set. The last equation thus allows for the exclusion
of sub-cycles such that for example x1,2 + x2,1 ≤ 1 eliminates the possibility of the cycle
1 − 2 − 1, making it thus non-polynomial. Johnson and Garey (1979) have then proved
the NP-hardness of the problem.

13

4. INTRODUCTION TO LOGISTICS PROBLEMS

4.3 Vehicle Routing Problem

The Vehicle Routing Problem (further denoted as VRP) is one of the most renown com-
binatorial optimization problems. In general words, the VRP deals is an extension of the
traveling salesmen where we have more than one salesman. It was first introduced by
Dantzig and Ramser (1959) as a real gasoline delivery problem. Ever since it has gained
popularity in operations research (Dethloff, 2001).

We will now specify the problem in more detail. We assume to have several salesmen K

which all visit a subset of the same set I of n := |I| customers. Each of these delivery
locations is visited exactly once by exactly one salesman. This is thus also called the
multiple traveling salesmen problem. The number of salesmen is not necessarily fixed
such that it can range from 1 to n. In the case of n salesmen, each salesman would visit
only exactly one delivery location.

In the following, we add a depot from where all routes depart from and return to and
which has no demand. In this paper, the first city i = 1 will be considered as the depot.
The goal is to keep the costs and traveling distance at a minimum. In addition, other
criteria as minimizing the longest route or only having even routes can be set. Another
extension is to constrain the traveling distance of the respective salesmen or vehicles
(Dethloff, 2001).

The solution of the VRP is finding a so-called optimal route. For this, we find several
definitions, ranging from routes with the least total distance to finding a route such that
the traveling costs are minimized. In the case of finding no further constraints, this
optimal solution would lie in assigning simply one vehicle and finding the shortest route
for such. This resembles the traveling salesmen problem (Christofides, 1976).

In order to tackle this, we might modify the definition of the optimal solution: In this, we
say that an optimal route is the route, which minimizes the length of the longest single
route, concerning all existent vehicles. This definition is needed if the goal is to complete
all deliveries in the shortest time possible.

In most problem data we find no location coordinates such that it is sufficient to take
the distance matrix into consideration. The latter is available since it is pre-computed.
Therefore, the location coordinates are needed just in case one wants to identify the
locations in the solution found, denoted by indices i ranging from [0, 1, ..., n], being relevant
for visualization only.

Alternatively, assuming now that the salesmen k ∈ K use vehicles with a maximum
capacity of Ck to supply the demand di for i ∈ I, we have the capacity-constrained VRP.
Parting from the constraints of the TSP we add two more indicator functions, namely Ii,j,k
and Ii,k. The former takes the value 1 if the vehicle k serves the city j whilst departing

14

4. INTRODUCTION TO LOGISTICS PROBLEMS

from i and 0 otherwise. The latter takes the value 1 if the vehicle k serves city i and 0
otherwise.

Taking the mathematical concepts presented in the previous section, we increment the
following features:

Objective function: Min
∑
i∈I

∑
j∈I

(ci,j ×
∑
k∈K

Ii,j,k) (4.5)∑
k∈K

Ii,k = n, if i = 1, otherwise 1,∀i ∈ I (4.6)∑
j∈I

Ii,j,k = Ii,k,∀j ∈ I, ∀k ∈ K (4.7)∑
i∈I

Ii,j,k = Ii,k,∀j ∈ I, ∀k ∈ K (4.8)∑
i∈I

diIi,k ≤ Ck,∀k ∈ K (4.9)∑
i∈S

∑
j∈S

Ii,j,k ≤ Card(J)− 1, ∀S ⊂ I, 1 ≤ Card(J) ≤ |n
2
|,∀k ∈ K (4.10)

In this setting, we want to minimize the total distance covered by all the vehicles (equa-
tion 4.6). Equation 4.7 sets that every city has to be covered by one vehicle, while
the depot is served by all vehicles whereas 4.8 and 4.9 guarantee that a vehicle serv-
ing one city has to depart from another and will do the same after serving the city it
is currently located in at the moment. As in the traveling salesmen problem, the last
constraint, namely Equation 4.10, is to eliminate any possible sub-cycle making it thus
non-polynomial Lenstra and Kan (1981).

Variations exist such that a capacity constraint is met. In this case, we add a capacity
C such that C :

∑m
i=1 di ≤ C holds. In this we affirm nothing but that the demands di

along the route do not to exceed the capacity of the vehicle.

Further if one aims to minimize the length of the longest route, the objective function
would be Min(maxk(

∑
i∈I

∑
j∈I(ci,j ×

∑
k∈K Ii,j,k))).

The real world often requires to add some additional constraints. For this purpose, ex-
tensions of the basic problem have been proposed. For example, heterogeneous VRP
(Roberto et al., 2007) allow to differentiate between several types of salesmen. Solomon
(1987) introduces time windows which specify that customers must be served in a given
period. Delivery plans can also be optimized for several days at once, for instance, in the
periodic VRP (Russell and Igo, 1979).

15

4. INTRODUCTION TO LOGISTICS PROBLEMS

4.4 Facility Location Problem

The main goal of this problem is to find the best possible placement of one or more
facilities, such as the aforementioned depots. Further, this should be the initiating of an
effective supply chain which is defined to aid in the minimization of combined costs, both
of transportation and building (Shmoys and Aardal, 1997).

This depot is designed to serve the demand of a given set of n customers. Building one
location is further related to a given set of costs of oi where i stands for the facility to be
build, as we do not impose the building of the same facility. In the following we assign
each customer j to one of the depots.

By this, we impose distribution costs tri,j resulting from the transportation of a good
from facility i to the customer j. The goal is now to find a set-up such that we find the
optimal locations for all facilities, defining which client is to be served by which facility
minimizing both the costs of building and distribution (Shmoys and Aardal, 1997).

Furthermore, the main components of this problem can be divided into two subgroups,
explained in the following. This first case denotes the group of static and incapacitated
facility location problems:

Objective function: Min
∑
i∈I

oiYi +
∑
i∈I

∑
j∈J

tri,jIi,j (4.11)

Ii,j

1 if facility i serves customer j∀(i, j) ∈ I × J

0 otherwise
(4.12)

Ii

1 if facility i is open ∀i ∈ I

0 otherwise
(4.13)

∑
i,j

Ii,j = 1,∀j ∈ J (4.14)

∑
j∈J

Ii,j ≤ Card(J)× Ii,∀i ∈ I (4.15)

Further, this model can be extended by setting an individual maximum capacity of Ci for
each facility i whereas the demand per customer dj needs to be supplied. To implement
this in our initial problem, we need to exchange 4.15 by

∑
j∈J djIi,j ≤ CiIi,∀i ∈ I.

In another case we need to assure the amount k of facilities to be built by adding
∑

i∈I Ii =
k. to the equations.

Now, we will set dynamic models which bring in periods of time throughout which the
supply chain is able to evolve. In this model, this evolution is set in such a way that

16

4. INTRODUCTION TO LOGISTICS PROBLEMS

facilities might open or close over time, as shown in the next equations.

Objective function: Min
∑
t∈T

∑
i inI

oiIi +
∑
t∈T

∑
i∈I

∑
j∈J

tri,jXi,j,t (4.16)

Ii,j,t

1 if facility i serves customer j in period t ∀(i, j, t) ∈ I × I × J × J

0 otherwise
(4.17)

Ii,t

1 if facility i is open ∀(i, t) ∈ I × T

0 otherwise
(4.18)

∑
i,j

Ii,j,t = 1, ∀(j, t) ∈ J × T (4.19)

∑
j∈J

Ii,j,t ≤ Card(J)× Ii,t, ∀(i, t) ∈ I × T (4.20)

Ii,t ≥ Ii,t+1,∀i ∈ Ic,∀t ∈ T\{NT} (4.21)

Ii,t ≤ Ii,t+1,∀i ∈ Io,∀t ∈ T\{NT} (4.22)

In this setting we differentiate between the closed facilities Ic denoting the group of facil-
ities that may be closed and Io the group of facilities to be opened. Let further t denote
the period of time. Equations 4.17 and 4.18 are merely increased by the time component.
Equation 4.21 is augmented by Ii,t in order to guarantee a decreasing sequence for already
built facilities, only able to shut down after time t. Equation 4.22 guarantees that the pre-
viously sequentially ordered facilities Ii,t form an increasing sequence for other potential
facilities to be built over the time horizon.

4.5 Location Routing Problem

If we consider now all three aforementioned problems together, we get to the Location
Routing Problem. In its essence, we seek the optimal amount, capacity and location of
facilities. In order to be able to supply the overall demand, we further need to determine
the optimal amount of vehicles and routes from those facilities (Floudas and Pardalos,
2016).

Moreover, we look at the difference to the simpler version, the Location-Allocation prob-
lem. In this the client is visited from the vehicle in direct form and once visited, the vehicle
returns to the facility without serving any other client, while in the current problem we
assume tours (Cooper, 1963).

Usually, we assume the facility assigned to a customer to directly serve the latter on his or
her own route. As this is rather inefficient, we consolidate the customers to such groups
that the total distance traveled or the amount of vehicles needed is reduced (Floudas and

17

4. INTRODUCTION TO LOGISTICS PROBLEMS

Pardalos, 2016).

This implies more decisions to be taken from the model, as well as deciding on

... the amount and the location of the respective facilities.

... the assignment of clients to certain depots and routes.

... the order in which the clients shall be served.

The whole system is designed in such a way that candidates of those facilities are located
on candidate sites. Then, delivery routes are fixed for a given set of clients in such a
way that the overall costs are minimized. In this setting, our aim is to minimize distri-
bution costs, since we assign vehicles to consumer groups apart from the main objective
of designing those routes (Laporte, 1987).

All in all, all problems presented in this section belong to the group of non-polynomial
problems. In real world conditions, all of the aforementioned problems face more restric-
tions such as size limitations and restricted locations.

4.6 Single Shortest Path Problem

The simplest logistics problem one can imagine is possibly the single-pair shortest path
problem (Neumann and Witt, 2010). It is simply the question of the shortest path be-
tween two locations. Formulated as a graph-theoretical problem, we search for the path
connecting two vertices with the smallest sum of weights of its constituent edges.

A parallel problem is the so-called single-source shortest path problem where we have to
find the shortest path between a source location v0 respectively source vertex v0 to all
other locations respectively vertices on the map respectively in the graph. The single-
destination shortest path problem, in contrast, asks for the shortest paths from all vertices
to a single destination vertex. The solution only differs from the solution of the single-
source shortest path problem if we regard directed graphs. In the all-pairs shortest path
problem, we search for the shortest paths between every pair of vertices in the graph (Fu
et al., 2006).

The single-pair shortest path problem, the single-source shortest path problem and the
single-destination shortest path problem can be solved using the algorithm proposed by
Dijkstra (1959). Let v0 denote the source node. We label all vertices with ∞ and the
empty path {} and say they are unvisited. Then, we iterate over the neighbors of each
order to update the first labels to the minimal distance from v0 and the second label to
the shortest path connecting the node to v0.

18

4. INTRODUCTION TO LOGISTICS PROBLEMS

The minimal distance of v0 to v0 is zero which is smaller than ∞. The first label of v0 is
thus updated to 0, while the second label is set to v0. We say v0 is now visited. For each
neighbor vx of v0 the minimal distance is the edge weight connecting the nodes which is
smaller than ∞ and the second label is thus set to v0 → vx. In a next step, we iterate
over all neighbors of v0. Let vx denote one such neighbor. If the path from v0 over vx to
the neighbors of vx is smaller than their current labels, these are updated. The second
label constitutes hereby the smallest path from v0 to vx continued by the corresponding
neighbors of vx. We can now say vx is visited. The algorithm continues until all vertices
have been visited.

This method requires to compute the distance of n nodes to all of their neighbors. Since a
node cannot have more than n− 1 neighbors, its computational requirement is in O(n2).
As a result, the single-pair, the single-source and the single-destination shortest path
problems are thus in P. Following the algorithm proposed by Fredman and Tarjan (1987),
the time complexity of the corresponding problems can be even reduced to O(m+n log n)

where m denotes the number of edges in the graph (Dijkstra, 1959).

The all-pairs shortest path problem can be solved as n distinct single-source destination
problems. As the function n is polynomial, we can say that the all-pairs shortest path
problem reduces to the single-source destination problems. As a result, its computational
complexity is also polynomial (O(n3)). This problem is thus also in P (Pearl, 1984).

For this increasing complexity, linear modeling might not be sufficient such that we will
use both exact methods and (meta-)heuristics, as introduced in the following sections.

19

5. EXACT METHODS

5 Exact Methods

Even though logistics problems are typically NP-hard, there still exist some exact solution
methods. Those calculate every possible solution and its respective outcome followed
by a comparison of the results from which the best one is chosen. Even though this
procedure can be accelerated by dynamic programming, the problems remain NP-hard.
It might seem logical, why this kind of methods lack in practical usage: Since the required
amount of calculation, complexity and computational time needed is immense, it is rather
inefficient (Floudas and Pardalos, 2016).

Eilon et al. (1974) were the first to use dynamic programming in the context of VRPs. The
used Branch-and-Bound as performed by Christofides and Eilon (1969). This approach
will be elucidated in the following.

5.1 Branch-and-Bound Methods

Among popular exact methods are the so called branch-and-bound (further denoted as
BnB) methods. Those methods have the advantage of being flexible for many types of
problems. The initial idea is to mark all possible solutions in an enumeration-tree. This
is problematic, since the amount of solution increases exponentially with bigger problems
Christofides and Eilon (1969).

For this we divide the solution space S into smaller parts thus creating so-called sub-
problems. The latter are then optimized individually. By the estimating upper and lower
bounds of the quantity being optimized, we are able to discard of certain sub-problems is
achieved (Lawler and Wood, 1966).

The following step, the so-called bound phase, denotes the relaxation of the problem,
e.g. admit solutions which do not belong to the feasible set of solutions initially set in
S. This can be done by not taking into consideration the constraints. When solving
this relaxation, we obtain a so-called lower bound on the value of the optimal solution
(Christofides and Eilon, 1969). By these bounds we differentiate between lower and higher
bounds of solutions which can be denoted as limiting factors to the solution in terms of
accuracy (Floudas and Pardalos, 2016).

In the following analysis, we look if the latter s∗ is part of S or if its costs are equal to
the costs of some s ∈ S. If this is the case, we can assume our new solution or s∗ to be
optimal. In the opposite case, we create n subsets of S such that

∪n
i=1 Si = S where each

Si is denoted as sub-problem. The latter are then added to a group of possible solutions
or solutions yet to be examined, a process called branching. In the following, we choose
one of those candidates in order to process it (Lawler and Wood, 1966).

20

5. EXACT METHODS

During this procedure, we will be confronted with the following four cases:

• Finding a better solution than s∗. The quality of a solution is implied by the
objective function f . Iff f(s∗) ≥ f(s) where s∗ is the current solution, also denoted
as the incubent or current solution. In that case s gets replaced by the solution of
the sub-problem s∗.

• For the case that the sub-problem has no solution, we prune it.

• Otherwise, we compare the lower bound of the sub-problem to the global upper
bound. The latter is obtained by the value of the best feasible solution found yet.
In the case that the lower bound being greater or equal to the global upper bound,
we discard the sub-problem, since this means we have no room for improvement
left.

• If the sub-problem cannot get discarded, we branch and add the sub-problem to
the list of active candidates. We proceed with this, until the amount of candidate
sub-problems is zero. The current best solution is then said to be optimal.

By this, we work ourselves through the enumeration tree, without the need to take every
single possible solution into consideration. Often it is possible to discard around 90% of
unnecessary solutions by this procedure (Laporte, 1992).

For the most prominent case of the TSP, the authors continue in the following way. They
needed to construct a solution tree, based on a cost matrix. In this, the costs of traveling
from node i to i are set to zero. In the following, the lower bound of the root node, which
is nothing else but a tour without constraints is calculated. For this the row-wise sum of
the two smallest costs is taken.

From this, two sub-problems are generated with the constraint that a specific tour must
or must not be contained, e.g. the tour [1; 2]. For each sub-problem the costs are then
calculated, e.g. a tour with and one without [1; 2]. For the lower bound of the former, we
sum the c1;2 and the row-wise lowest costs. The procedure is similar to the calculation of
the root node’s lower bound, as done beforehand.

Then the lower bounds of both sub-problems are compared and the branch with the lower
value is chosen, proceeding analogously with other tours. If both happen to have the
same lower bound, we need to continue with both sub-problems, branching them to the
solution tree.

Noticeable is that even though we do not compute the whole solution tree, the compu-
tational effort this method undertakes is immense. Please refer to Figure 3 on the next
page for a graphical insight.

21

5. EXACT METHODS

Figure 3: Methodology on one branch of the BnB

Even though for smaller problems BnB is successful with growing problem instances,
solution finding gets inefficient. In order to tackle this, the branch-and-cut method was
introduced, as elucidated in the following.

5.2 Branch-and-Cut Methods

Combining the methods of cutting-planes and the aforementioned BnB methodology
yields in the branch-and-cut (further denoted as BnC). Due to the initial cutting phase,
it is much more powerful than its elder brother, the BnB (Padberg and Rinaldi, 1991).

The idea of cutting planes was introduced by Dantzig et al. (1954). With this, Padberg
and Rinaldi (1991) solved the TSP by iteratively adding cuts. These cuts shrink the
feasible solution space, without the deletion of possible solution tours.

This procedure of solving the linear programming relaxation and search for cuts is done
as long as it takes to obtain a feasible solution for the original problem. The cutting plane
is used until no valid inequalities can be found in the solution space anymore (Rothlauf,
2011). Further we store the best solution for the original and relaxed problem respectively.
After this, we start with the already explained BnB-methodology.

The BnC was originally designed to solve the TSP by passing each customer and depot
only once. When augmenting it, it is able to solve the VRP by simply adding all individual
vehicle tours into one. By doing so we can assume that the number of visits to the depot
is as high as the amount of existent tours. Through this we can now reformulate the VRP
as a TSP by adding artificial depots all located at the same location and excluding the
actual depots (Christofides and Eilon, 1969).

The amount N of those artificial depots is equal to the amount of vehicles employed. In
the following, we prohibit traveling from one depot to another. This is done by setting

22

5. EXACT METHODS

the distance and the resulting costs between them to ∞. From a cost matrix coherent to
the capacity constraints of the respective vehicles a solution is then computed (Puchinger
and Raidl, 2005).

This number has a lower bound, which is determined by the vehicle capacity C. If we
denote di as the respective customers demand, the lower bound results from N ≥

∑n di
C

.

The authors solve the problem now for several N and choose the best suitable solution.
Christofides and Eilon (1969) argue that there is no need to implement more than four
values for N , when starting with the lowest value possible and increasing it by one per
trial.

One could argue against the feasibility of the lowest or even some higher values of N ,
but as we increase N successively, feasible solution can result in the process, from which
conclusions are then taken (Christofides and Eilon, 1969).

Before we proceed the branching of another node, we must make sure that the following
constraints have been met: The maximum capacity of the vehicle in question is not to
be surpassed by the load proposed by the solution as well as guaranteeing that the total
accumulated distance is within the limits of the pre-defined boundaries. Furthermore,
considering the kth tour such that N − k tours remain to be planned one must guarantee
that the demand of the remaining n customers does not exceed the capacity constraints
of the N − k vehicles, namely

∑n qi
C > N − k

.

Christofides (1976) argue if the answer of only one of this constraints is affirmative, we
can skip the further exploration of this branch and set off to another.

While we can only consider one of either capacity or distance constraints, we need to take
further action to determine bounds for the decision tree. By this we can reduce the search
space in order to gain efficiency.

Christofides and Eilon (1969) calculate a so-called minimal spanning tree. They proceeded
in the following logic: As the route is now a closed cycle with n points such that each
point has two links to other points. The authors then define a spanning tree, which is
a ’...configuration of n − 1 straight lines passing through the n points...’ and a minimal
spanning tree being the shortest sum of those links.

If we take the loop of the tour and remove one link such that n− 1 connections remain,
we obtain the spanning tree. The result is then a lower bound solution for the spanning
tree. Following from this, the minimal spanning tree is also lower bound. As we have to
obtain n links, we add the missing one, by linking the points of shortest distance to each
other.

The authors then add one point at the same location as an already existing point with
the difference that the distance between them is set to∞. Resulting from this, we acquire

23

5. EXACT METHODS

n + 1 points. The new minimal spanning tree resulting from this is then a lower bound
for the original problem consisting of n points Christofides and Eilon (1969).

Using the method proposed by (Kruskal, 1956), we are now able to come up with the
minimal spanning tree of this problem. We repeat the selection of the shortest edge,
without forming any loops to edges already chosen, until no edge is left, similar to the
neighborhood heuristic explained in Section 6.1.2 on page 29.

We won‘t go any further in detail, but just notify that this is the approach of the BnC
procedure, originally proposed by Little et al. (1963) and improved by the authors men-
tioned before with the help of the methodology by Kruskal (1956). As in the BnB we
see that the computational effort is immense, but still used in practice and when it is not
needed to come up with feasible solutions quickly (Floudas and Pardalos, 2016). Yet, it
is not problem-specific and can thus be used in a variety of problems, making it somehow
superior to normal heuristics.

However, even with the most efficient solution method, the best exact algorithm can only
solve some instances with less than 200 vehicles via progressive improvement algorithms.
Nonetheless, Applegate et al. (2006) computed a solution with a total of 85.900 cities
with a BnB and a problem-specific BnC method. Even though their algorithm proved to
be successful, it took them 136 CPU-years in order to obtain results.

As the complexity of these problems increases, difficulties in finding feasible solutions in
reasonable computational time arise. In a world where time efficiency is of great value
it urges to find good solutions in reasonable time, guaranteeing feasibility or optimal-
ity (Toth and Vigo, 2002). Nonetheless, exact methods are known to be very effective
in solving constraint satisfaction problems. Those consist in tackling hard constraints
(Puchinger and Raidl, 2005).

In order to attack problems such as the urban logistics problem explained in Section 4, it
is required to obtain a method as a planning instrument which allows us to calculate the
desired output needed to achieve the best solution possible (Domschke et al., 2006).

The main components of planning are listed in the following: Accessing and identifying
the problem itself and the starting point. From this the following plans of action shall be
derived. The latter are sorted in such a manner that each one of them leads to different
outcomes, submissive to a given preference or objective function (Streim, 1975).

These plans of action are then considered to be decision variables itself and the existent
connections between the latter and the main goal do not need to be simple and can appear
to be contending. Whilst simpler connections might be solved analytically, more complex
or stochastic systems require simulations in order to rank outcomes, facilitating further

24

5. EXACT METHODS

decision making (Thorngate, 1980).

Furthermore, forecasts might be used (Bányai et al., 2019). In practical usage combina-
torial problems build a great part such that discrete alternatives of action are of main
interest, consisting of selection, assignment and order decision problems (Pearl, 1984).

In such a model, it is utterly necessary to use optimization tools which provide help or
even pick the best plan of action (depending on what outcome is desired). This could
be achieved by the usage of so called optimized heuristics which appear to have taken
over exact programming, such as the computational demanding BnB methods (Lawler
and Wood, 1966).

Throughout this thesis, the main components of heuristics and their way of functioning
shall be elucidated. We will be defining pure heuristics and pure metaheuristics separately
giving the subgroup of learnheuristics in the field of metaheuristics special attention. The
importance to introduce pure heuristics arises from the fast that these algorithms are
typically used as first solution strategies for metaheuristics.

25

6. HEURISTICS

6 Heuristics

Derived from the Greek word ’heuristikein’ which translates to ’find’ or ’a guidance to
reach a methodical way to knowledge’ (Sörensen et al., 2018). In other words, the under-
lying idea of heuristics lies in solving a problem by experience (Bingham and Eisenhardt,
2011). Often denoted to be ’a rule of thumb’, it certainly does not deliver the ideal so-
lution, but nevertheless solves the problem in a more or less efficient way (Pearl, 1984).
Further, the implementation of heuristics is rather easy and usually not limited for bigger
problem sizes (Streim, 1975).

The acquired knowledge by the implementation of heuristics is often problem specific.
Developed and plausible plans of action are currently being formalized and made public via
software (Domschke et al., 2006). Example for those are CPLEX, GAMS and Googles OR
Tools, among others. This happens through the relinquishing of beforehand mentioned
optimization criteria which is mainly defined in such a way that a small computation time
and simple implementation can be achieved. This concept will be elucidated throughout
the section.

The main problem lies in the identification of easy heuristic plans of action which deliver
the best outcomes based on previously defined criteria or constraints (Pearl, 1984). Com-
monly, heuristics are mostly based on so called greedy strategies: Within those, solutions
are being constructed piece-wise, following a Markov-process: Each decision node depends
on the previous ones (Kennedy, 2001). At every point we opt for a decision that is at
least a local optima hoping that it leads to a globally optimal solution. All in all we can
say that this kind of algorithms represent a group of iterative heuristics that typically
make the most optimal choice in each step as they attempt to find the globally optimal
solution (Laporte and Semet, 2002).

To move from this moment on, it is necessary to choose the optimal decision for the
underlying node individually. This is also known as Single Pass Heuristic (Fisher and
Rinnooy Kan, 1988). Please refer to Section 6.1.1 on page 29 for a more detailed expla-
nation.

Further, in the field of heuristic algorithms the justification is based on arguments of
plausibility, rather than mathematical proof (Toth and Vigo, 2002). Different from exact
solution achieved via mathematical methods, heuristics can neither determine nor guar-
antee the optimality of both the underlying method and the solution obtained through
it. For this particular reason, they are often denoted as ’sub-optimal’ procedures (Toth
and Vigo, 2002).

In order to access the quality of the utilized heuristics and for the sake of comparison we
rely on the following four definitions, accuracy, speed, simplicity and flexibility (Cordeau

26

6. HEURISTICS

et al., 2002).

• Accuracy captures the degree of departure of a heuristic solution value from the
optimal value. Difficulties arise on capturing the latter specially in cases as the
traveling salesman or VRP. Additionally, this measure is often confronted with
consistency: It is better to obtain only good results most of the time with some
heuristic than opting for heuristics that performs better most of the time, but very
poorly in other occasions (Pearl, 1984).

• Speed is, as already pointed out in the previous sections, crucial. The importance
of this measure is not fixed but rather depends on the problem itself. For example
an application for a police redeployment needs much faster calculations than a depot
localization problem (Gendreau et al., 2001). We measure speed via clock time or
GPU-time needed to come up with a solution.

• Simplicity: Apart from numerical measures, programmers aim for simple and
easy to implement code. As we argued beforehand, a code should be both easy to
understand as to be implemented. Let us assume the Clarke and Wright algorithm
from Section 6.2.2 on page 32 (Clarke and Wright, 1964). One of the reasons for its
popularity lies in its simplicity.

But not always ’the simpler the better’ holds, as we have to deal with the trade-off
raging between complexity and good results. In the heuristics presented in this
section we see that over time the amount of parameters increases steadily such that
the methods sacrifice simplicity. In order to tackle this problem, we could either set
certain parameters to a fixed number or by giving them the possibility to self-adjust.

• Flexibility aims to build heuristics in such a way that they are able to adapt
to new constraints added for real-life-application reasons. This results normally
in performance deterioration by adding new side-constraints. Clarke and Wright
(1964) propose to deal with this problem with two steps. A function F (x) computing
the routing costs of the solution s. A second function F ′(x) summing up F (x) and
adding a weighted penalty term associated with violations of each additional side
constraint, thus penalizing overfitting.
In order to exemplify the last point, let us assume a vehicle with capacity Ci and
a route duration of D(x) with solution s. In this case, F ′(x) = F (x) + αQ(x) +

βD(x) whereas α and β denote positive self-adjusting penalty parameters. We start
by giving them the value 1 and periodically increasing or decreasing them. This
happens according to previous solution’s feasibility. Through this, we make sure
that the algorithm is neither overfitted nor stops evolving over time such that it

27

6. HEURISTICS

gets trapped to local minima. By this we could thus show in a simple way that
flexibility and simplicity go hand in hand. By local minima we denote solutions in
the solution space, better than all their neighbors, but not necessarily representing
the best solution possible, which would then be the global optimum.

Decisive for the success in practical usage are the searching elements which need to be
suitable in the processes of exploitation/intensification and exploration/diversification, fol-
lowing the definition of Osman and Kelly (1996). In other words, these methods describe
the way we move through the solution space S. Please refer to the Tables 13 on page 120
and 14 on page 121 in order to get a summarized comparison between the respective
techniques used.

By the former we denote focusing the search process in a specific and therefore most
promising solution area. This means that we exploit knowledge which has already been
acquired beforehand. The latter one denotes the diversification of the searching process
in the solution space itself, also in yet unknown areas. Several solution areas shall then
be compared which happens in a rather randomized way (Sevaux et al., 2018).

With regard to the use of these two complementary concepts, one can roughly differentiate
between an explicit sequence of intensification and diversification or the entanglement
elements in the application of the corresponding search operators (Arora and Gigras,
2013).

In the following, we will be introducing some of the most important heuristics. The
importance of the respective methods, are based upon the amount of citations and research
found on GoogleScholar. Additionally we will be dividing this Section into sub-chapters
denoted by the respective classification.

The classification of heuristics is presented in a much simpler way, than for its counterpart
the (meta-)heuristics, as will be seen in Section 8 on page 40. Thus, we are able to
distinguish two main groups: Constructive and improvement heuristics (Laporte, 1992).

6.1 Constructive Heuristics

These kind of heuristics work on gradually building feasible solutions. Further, they do
not omit the fact that the cost constraint has to be met. As we solely construct a route, we
do not have an improvement phase per se. All in all, we implement basically two functions
only, namely merging existing routes and assigning nodes to the respective routes (Toth
and Vigo, 2002).

28

6. HEURISTICS

6.1.1 Bentley’s Greedy Algorithms

Bentley’s algorithm (Bentley, 1980) is possibly one of the most greedy algorithms for the
TSP. It starts by sorting all available edge weights in ascending order. Those edge weights
are distributed according to the distance between two nodes. This distance is implicitly
given by a so-called distance function (Bentley, 1980).

In order to create our tour, we then repeat to link those nodes connected by the smallest
edge weight that are not linked so far. Additionally, we have to be cautious to not create
sub-cycles within our tour (Kennedy, 2001). This way, the algorithm progressively builds
the tour fragments. Please refer to Algorithm 1 for the pseudo code.

Algorithm 1 Bentley’s greedy algorithm
Input: TSP
Output: tour

1: Sort edge weights in ascending order and save the corresponding edges in the respective
order in asc_edges

2: Set tour to Empty
3: for i ∈ {1, ...,m} do
4: if asc_edges[i] is not in tour and adding asc_edges[i] to tour does not introduce

sub-cycle in tour
then

5: Add asc_edges[i] to tour
6: return tour

This benefits of this approach lie in the low amount of calculation needed and thus being
able to perform pretty good on several computational engines boosting the already renown
and shortly explained classical greedy-approach (Laporte and Semet, 2002).

The drawbacks of this algorithm lie in the general drawback of all greedy strategies. The
algorithm never looks back in order to evaluate the decision taken (Kennedy, 2001).

6.1.2 Nearest Neighborhood Methods

This methods build on the principles of greedy-algorithms. It is initiated with a random
location (Rosenkrantz et al., 1977). From this, we part to the closest (also denoted as
’cheapest’ node). This process is iterated as often as there are nodes left to not be visited.
We end the tour by connecting the last node with the starting node, i.e. (in; i1). Recall
Figure 4 on the next page to see the methodology behind the general nearest neighborhood
methods.

While the application is rather easy and solves the problem in low computational time,
it bears the risk of the salesman or vehicle to travel long distances when the amount of
remaining nodes is low (Mladenović and Hansen, 1997). Further, before the implementa-

29

6. HEURISTICS

Figure 4: Methodology of Nearest Neighborhood Search

tion, one must take into account that one has to follow the right approach, often hard to
be achieved within the methods of greedy heuristics.

We can thus differentiate two cases, one where the algorithm chooses the following des-
tination based on the shortest path to be traveled and the other where the algorithm
considers the underlying transportation costs (Lin et al., 1998).

It might have come to the reader’s attention that the basic approach is similar to the
aforementioned greedy algorithm proposed by Bentley (1980), yet in this setting, we do
not order the edges, but take them as they are.

With this technique we were able to see that finding local optima and combining them
does not lead to optimal or solutions or does even guarantee even good tours. Since the
quality of the solution might be effected, when only a small amount of nodes are left
(Bentley, 1980).

Being implemented in a rather easy way and requiring practically no previous gained
knowledge, the solutions provided are most often not optimal and these algorithms bear
the risk of not even finding a feasible tour, even though there might be one (Lin et al.,
1998).

6.2 Improvement Heuristics

In this we start with an already complete tour or solution of the problem, obtained through
benchmark processes or beforehand used heuristics. This is then taken as the incubent,
current solution s∗ and improved in the following. Lin (1965) can be seen as the base for
all further improvement heuristics

30

6. HEURISTICS

6.2.1 Multi-Phase-Methods

Within those, we set to decompose the problem into two natural-components: node clus-
tering and route construction. Further, it is possible to imply feedback algorithms between
the two groups. More is more, the order in which we impose both procedures, is not fix.
For procedures which cluster first to routing, we organize the nodes to feasible clusters.
The route is than built upon them. In the opposite case, the tour is built initially and
the clusters segment it into feasible vehicle routes (Hendrickson and Leland, 1995).

Motivated by their work on graph partitioning which deals with the reduction of a graph
in sub-graphs by partitioning its nodes into several mutually exclusive groups, Walshaw
(2002) propose a multi-level approach to the TSP. The fundamental idea is to summarize
pairs of nodes to one node based on different criteria such that the graph size is reduced.
This procedure is applied several times on the reduced graphs until the total number of
nodes falls below a pre-defined threshold.

For each merging step, we get another layer of the original graph. We then start by solving
the problem, in this example for the TSP, on the last respectively coarsest level of the
graph and propagate the solution as initial starting value to solve the respective problem
on the graph of the preceding level. The implicit assumption is that the fundamental
graph features are pertained in the coarser level of the graph. Accordingly, the search
space is reduced (Walshaw, 2002).

In more intuitive terms, imagine you want to determine the shortest path connecting
Berlin and Munich. We let the 16 states of Germany constitute the last level of the
graph. We further assume that the cities make the second level of the graph. The first
level is the original graph itself with all the streets in Germany. You could start by
first determining the states you would have to cross to get from Berlin to Bavaria where
Munich lies.

The minimization problem reduces to a graph with 16 nodes and 27 edges. The edge
weights are then determined by the shortest distance between the respective states. We
thus have that the shortest path starts in Berlin, goes over Brandenburg and passes
Saxony before it arrives in Bavaria. In a next step, we would solve the minimization
problem of which cities we would have to pass if we assume that we follow the sequence
of states listed above.

This route is not fixed and is refined in a next step by optimizing over its local neighbors.
It might even happen that the route does not pass the states mentioned above, even
though it is more probable that it does. Last but not least, we could determine the
shortest route within all these cities connecting their preceding and subsequent neighbor
city.

31

6. HEURISTICS

Multi-level approaches are versatile and can be used in the most diverse settings: graph
partitioning (Hendrickson and Leland, 1995), graph drawing (Walshaw, 2000) and even
graph embedding (Chen et al., 2018). Implementing a multilevel algorithm requires spec-
ifying a refinement strategy, a coarsening algorithm, an initialization algorithm and an
extension algorithm. The different components will be explained in the following.

In the first step, the matching process aims to fix the those edges that are most likely
to appear in a high quality tour. Walshaw (2002) proposes to match each node with its
nearest neighbor according to the so-known minimum-weight perfect matching problem,
which is thus the coarsening algorithm. In this way, we coarsen the graph iteratively until
we achieve the desired graph size.

Walshaw (2002) assumes that the coarsening ceases when further coarsening would make
the graph degenerate. This means that the graph is reduced to a size of only two nodes.
Initialization is then trivial.

In a third step, the refinement algorithm is used to improve the tour created throughout
the initial two steps, by guaranteeing that every node that already has been visited is not
revisited and thus being responsible for not including any sub-cycles.

Crucial for this methodology to work lies in the three algorithms cited above as well as
finding reasonable ways in clustering. Those are not always as easy to implement as in
our example.

6.2.2 Clarke and Wright’s Savings Algorithm

One of the conceptually slightly less simple heuristics for solving instances as the VRP and
most prominent in the field of heuristics is the Savings Algorithm introduced by Clarke
and Wright (1964). Similarly to the heuristics presented before, this is again a greedy
algorithm.

Please refer to Algorithm 2 on the following page for the pseudo code of this algorithm.
Note that we formulated the algorithm in such a way that it can be both used for un-
directed as well as directed networks (West et al., 1996).

Put differently, the algorithm proceeds as follows: We start by assigning each delivery
location to another salesmen. We thus create several tours which contain both, the depot
and one other node. The paths of those delivery locations which give the highest savings
when merged are merged as long as no more saving is possible (Clarke and Wright, 1964).

If we say that one route would be traveling from (0, 1, ..., i, 0) and the other (0, 1, ..., j, 0).
When we merge those two routes, we get to save costs of csi,j = ci,0 + c0,j − ci,j once
generating one tour, (0, 1, ..., i, j, ..., 0). We then proceed by calculating the respective
savings csi,j , ∀i, j ∈ N, without i = j. In the following, we create n routes namely

32

6. HEURISTICS

Algorithm 2 Saving Algorithm according to Clarke and Wright (1964)
Input: n delivery locations
Output:

1: Set routes to Empty
2: for i ∈ I do Add c0 → ci → c0 to routes
3: Initialize n× n matrix savings
4: for i ∈ I do
5: for j ∈ I do
6: Set savingsi,j equal to saving for merging delivery locations ci and cj given

by savingsi,j = d0i + dj0 − dij

7: Sort all entries of savings in descending order and save in desc_savings
8: for iter= 0 to n · n do
9: if desc_savings[iter]> 0 then

10: Set i and j equal to the first and second delivery locations that were merged
to get the saving desc_savings[iter]

11: if the route containing i in routes ends on i before returning to the depot and
the route containing j in routes begins on j after departing from the depot

then
12: Delete the corresponding routes from routes and add the route merging

the deleted ones
13: return routes

(0, i, 0) for all i.

While the initial step of calculating the savings is always the same, we differentiate be-
tween the following two procedures:

• Parallel Saving: After ordering the savings, we start at the top with the following
condition: Given si,j, the algorithm looks for two routes containing or edge (0, j)

and the respective other with (i, 0) in order to be merged. If this is the case, we
might exclude the single tours, unifying them to (i, j). This method is also referred
to as the best feasible merge (Laporte, 1992).

• Sequential Saving: Our starting point is now the route 0, i, ..., j, 0. We now look
for the first saving either sk,i or sl,j. In order to feasibly merge some other route
containing either the edge (k, 0) or (0, l). If this is the case, the route is merged and
we proceed with the next route analogously. This is solely stopped once no further
merge is considered feasible. Further, we denote this method as a route extension
(Laporte, 1992).

The drawback of the presented algorithm lies in the variability of the reported results
retrieved from the saving algorithm. One possible explanation lies in the lack of specifi-
cation in research of which of the respective methods, parallel or sequential savings has

33

6. HEURISTICS

been used. Generally authors consider the parallel method to be dominant, mainly on
computational time needed Laporte (1992).

Furthermore, the complex structure of the algorithm rises computational effort, as we
need to calculate all possible savings. In the following, those savings need to be sorted,
being the most consuming operation. Such a savings lists, in the case of n cities results
in a matrix with k2 elements such that we obtain a complexity of O(k2 log k). In some
exceptional but worst cases, it can be necessary to conduct an experimental setup for
every saving such that the right vehicle was able to merge the routes (Laporte and Semet,
2002).

Further, the algorithm does neither incorporate fixed costs caused by the vehicle nor the
fleet size, although the former is easily implemented by adding a constant to every cost
ci,j,∀j ∈ [2;n]. The latter can then be achieved through two different approaches. In
the first, we repeat the merging procedure as often as routes are required, even if the
respective savings become negative (Laporte, 1992). In another setting, we extend the
algorithm for a fixed amount of |K| salesmen or vehicles. If the algorithm gives a result
where we need less than |K|, we can just leave the remaining ones unoccupied. In a case
where the algorithm results in more routes than we have salesmen or vehicles, some of
the latter depart again from the depot after returning to it (Laporte and Semet, 2002).

This original procedure by Clarke and Wright (1964) can be executed in O(n2 log n) time.
Through extensions, research was able to reduce this complexity through different data
structures, as in Pichpibul and Kawtummachai (2012) (Laporte, 1992).

6.2.3 Lin-Kernighan Algorithm

Lin and Kernighan (1973) propose this algorithm which constructs and tests complex local
search methods composed by simpler ones. Basically, this algorithm improves a given
tour by modifying it in order to reduce costs. The condition to be met is ci,i+1 + cj,j+1 >

ci,j + ci+1,j+1 where c denotes the respective costs of the vertices.

This is done by repeating a replacing procedure where sets of tour edges get replaced by
cheaper alternatives if possible. The case of a k = 2 is shown in Figure 5 on the next
page.

This Lin-Kerningham heuristic has its origin in the k-opt heuristic which originates from
the 2-opt technique (Croes, 1958), as shown in the Figure 5 on the following page. In the
setting of the latter, the algorithm iteratively removes all possible pairs of non-adjacent
edges observed in a single tour. In the following, the resulting two unconnected sub-tours
are then re-connected, resulting in a minimal tour length. If the distances are now said
to be Euclidean (on a two-dimensional plane), we obtain a non-crossing tour.

34

6. HEURISTICS

Figure 5: Methodology of the 2-opt Lin-Kerningham algorithm

Lin (1965) generalized the 2-opt heuristic into a λ-opt heuristic with
(
n
λ

)
k-subsets of

existent edges. Instead of analyzing pairs, we analyse all λ-subsets of edges in the tour.

We take each subset of S into account, testing if our tour can be optimized by replacing
edges in S with λ new ones. This procedure is denoted as a so-called λ-switch. If the
latter does not bring any benefits, we have a λ-optimum (Lin, 1965).

The authors iteratively perform such switches until obtaining the optimum. Further
research has shown that λ optimally lies within the range of [1; 3]. Within this range
the application of the algorithm is still practical, as the amount of iterations needed is
polynomial. In the 2-opt case for Euclidean problems we have O(n10logn) runs, for the

λ-opt case this amount increases to O(
1

4
n

1

2k) (Chandra et al., 1994).

Returning to the Lin-Kerningham algorithm, (Lin and Kernighan, 1973) extended Lin’s
research from the λ-opt and relax their assumptions. In more detail, they allow λ to
vary along the search and the algorithm not to immediately implement all encountered
improvements.

The algorithm starts with a random tour where it removes a path from tour. From the
latter, we take the end and connect it to a random internal node, which in consequence
creates a tailed circle. If this operation of possible interchanges has been exhausted in
finding improvements, this tour replaces the current tour. Afterwards, the procedure is
repeated (Lin and Kernighan, 1973).

From this, we once more remove an edge, resulting in a new path. We repeat this as
long as both the sum of ’gain-sum’ is positive and un-added or removed edges exist. The

35

6. HEURISTICS

former is thus defined as the sum of removed, except for the last one, and the sum of
added edges. Further, the authors compute the costs by joining the endpoints. In the
case of being lower than on the original tour, we say the current tour to be the solution.

Johnson and McGeoch (1997) even define this algorithm as the world champion heuristic
for the traveling TSP from 1973 to 1989, as it is effective on real world problems. Walshaw
(2002) uses the Lin-Kernigham Algorithm as a local search method, even though other
(meta-)heuristics could be used as well. For an explanation of the local search method,
please refer to Section 9 on page 44.

Even though being state-of-the-art, the Lin-Kerningham obtains its good results with
much computational effort. The latter can thus grow exponentially depending on the
problem instance (Lin and Kernighan, 1973).

As a concluding remark on heuristicsl we can say that throughout a long time they
have been the state-of-the-art methods in solving prominent problems as the salesman or
VRP. Nonetheless, we see its limitations in being too problem specific, and lacking in the
aforementioned quality criteria of flexibility. For this, a sub-group, the meta-heuristics
arise, which will be elucidated in Section 8 on page 40. For the classification of the
latter being challenging, we start by introducing our methodology in classification in the
following Section 7 on the next page.

36

7. CLASSIFICATION SCHEME

7 Classification Scheme

In the following we will be elucidating the reason we chose to classify the metaheuristic
employed in this work between ’Individual-based’ and ’Population-based-methods’, since
there several authors use different approaches in separating or grouping those algorithms
(Puchinger and Raidl, 2005).

One intuitive way would lie in the separation of ’nature-based and ’non-nature-based’
procedures. This classification might have been able to capture metaheuristics in their
early days, but after the enforced discovery of hybrids, further described in Section 9 on
page 68 a classification by this means does not bring any enlightment. Those, as will be
shown can’t be put in either of this classes as most often components of both groups are
combined Blum et al. (2011).

Another popular classification scheme would be imposing ’dynamic’ against ’static ob-
jective functions’. The core of this classification is to escape the trap of only achieving
local optima, by allowing for a change in the search landscape itself (Arora and Gigras,
2013). Although it might seem reasonable to classify metaheuristics by this way, we ar-
gue against it, since many of the presented ’population-based’ methods even though being
fixed on their objective functions, rely on a learning component such that they mimic the
functionality of ’dynamic objective functions’ although being considered ’static’.

Furthermore, we could also differentiate between ’one’ or ’various neighborhood struc-
tures’. Within the latter, we denote a changing fitness landscape topology throughout
the algorithm. This is used in order to diversify the search by swapping between those
landscapes. We chose not to follow this classification, as only a small amount of meta-
heuristics, as the Variable Neighborhood Search established initially by Mladenović and
Hansen (1997) and not further explained in this work make use of those ’neighborhood
structures’. Thus a classification in these groups is not useful.

In other works, the authors based their classification on whether the algorithm use a
’memory’ component or not. In the latter case, the information used to plan the next
actions is based on the current information state and follows thus a Markov-process.
We further could differentiate between long and short-term memory-usage. While the
latter relies only on recently performed steps, the former takes note of an accumulation of
synthetic parameters of search (Arora and Gigras, 2013). We will use this classification
to enhance our classification, yet the algorithms are not clearly to be categorized into one
of those groups.

One alternate differentiation of metaheuristics is based on whether they are ’individual-
’ or ’population-based’. By this we denote the amount of possible solutions taken into
consideration simultaneously on the path of finding the best one. While the first, also

37

7. CLASSIFICATION SCHEME

Fi
gu

re
6:

C
la

ss
ifi

ca
tio

n
of

(m
et

a-
)h

eu
ris

tic
s

pr
op

os
ed

by
us

38

7. CLASSIFICATION SCHEME

denoted as ’trajectory-method’ describe, as the name states, a trajectory when searching
the solution space, the latter perform the search process in such a way that the evolution
of a set of point in the solution space is described (Gendreau and Potvin, 2005).

Even though the memory-usage argument is strong, we rely on the last presented methods
of classification, since in our view, this is the only way to really obtain a clear distinction
between the respective algorithms. This becomes even more evident once we introduce
the concept of hybrids in Section 9 on page 68.

Please refer to Figure 6 on the preceding page for a visualizations of the applied classifi-
cation scheme.

39

8. METAHEURISTICS

8 Metaheuristics

Metaheuristics build a subgroup of heuristics. These methods are, however, more powerful
than standard heuristics since they incorporate a more effective mechanism to reduce the
risk of being trapped in local minima as well as not being restricted to certain problems
only (Blum and Roli, 2003).

Moreover, a metaheuristic is able to employ heuristic methods by guiding them over
the search space in order to exploit its best capabilities to achieve better solutions. In
other words, metaheuristics represent algorithms which enhance the efficiency of heuristic
procedures (Sörensen et al., 2018). Further, they are designed in such a way that they
solve a high number of the aforementioned computational optimization problems, but lack
in the need to heavily adapt to each problem (Sörensen et al., 2018).

”Metaheuristics” or ”modern heuristic”
methods are used to develop and control
heuristic procedures. It is important to note
that the prefix ”meta” is not justified by
computer scientists and is rather used to de-
note that the search for the optimal solution
is done on an ”upper level” (Gendreau and
Potvin, 2005). Please refer to Figure 7 for
an illustrative explanation.
Thereby we denote especially those proce-
dures which aim to find solutions by the

Figure 7: Levels of different solvers

means of a run time efficient search on the successive improvement of already processed
solutions. This happens via an application of iterative searching operators, building upon
local search and/or upon evolutional/recombinatorial principles (Puchinger and Raidl,
2005) which will be explained in the throughout his work.

What unifies both principles is the matter of fact that both function on the principles of
a mold which means that both techniques can be used independently from the problem
itself. Most often the foundations of these metaheuristics can be found in nature. In
contrast, the application of heuristics itself is based upon the adaptation or completion
of problem specific properties given by the problem itself (Sörensen et al., 2018).

For metaheuristics being black box processes, scientific research lacks in theoretical knowl-
edge to assume performance of these validations. By black box we denote systems where
we see the input, yet we don‘t really know what is done with this data in order to get
the output (Gendreau and Potvin, 2005). A majority of these algorithms have a stochas-
tic behavior and mimic biological or physical processes, as we will see in the following

40

8. METAHEURISTICS

sections.

As one of this papers goals is to provide an overview of classification, we will provide fur-
ther information on metaheuristic classes, which were already implemented into a graph-
ical representation, as in Figure 6 on page 38. We will thus start by introducing basic
notions, important throughout the remaining work.

8.1 Introduction and Basic Notations

We denote a function N : S → 2S, which matches each solution s ∈ S with a subset
N(s) ⊂ S (Lin et al., 1998). A solution s∗ ∈ N(S) is called neighbor of a solution s. For
this to be true, we need to make sure that the so-called phenomena locality exists.

Locality describes the effect on a solution once we move in its representation (San Nah Sze,
2007). This movement is referred to as perturbation. When we perform small modifi-
cations on this representation, the solution must present small changes, too. If this is
the case, we can denote the neighborhood to have strong locality, which means that the
search in the solution space is more powerful. The opposite case, weak locality, denotes
when a large effect in the solution while only small modifications have been done to the
representation. This effect can come to an extreme such that the search converges to a
random search in the search space S (Gendreau and Potvin, 2005).

The principal component of this method, lies in generating an initial solution to depart
from. There are numerous ways in modeling the latter, but we will be focusing only on
two of them (Arora and Gigras, 2013).

The easier method consists in obtaining the initial solution randomly. This is done rather
quick, but one has to take into consideration that in further solution finding, the solution
might take more iterations and computational time to converge. Yet, the more constrained
a problem is, the more difficult it might be to find feasible random solutions. For this and
other cases, we apply the already explained greedy approach (Arora and Gigras, 2013).

By this we are able to consistently reduce polynomial-time complexity and thus create
local optima of better quality. Local optima are thus defined as follows.

f(s∗) ≤ f(s), ∀s ∈ N(s∗) (8.1)

As described in Equation 8.1, a local optima of one neighborhood does not imply being
a local optima for another neighborhood, since the optimality is guaranteed only for the
neighborhood N(s∗).

Further, there is a set of local optima SN = S−
N ∪ S+

N in the means of the local minima

41

8. METAHEURISTICS

and maxima, defined in equations 8.2 and 8.3 respectively:

S−
N = {x ∈ S, ∀y ∈ N(x), H(x) ≤ H(y)} (8.2)

S+
N = {x ∈ S, ∀y ∈ N(x), H(x) ≥ H(y)} (8.3)

Two flaws appear on this: Inapplicability and ineffectivity.

Inapplicability arises since the amount of elements in S might be so large that memo-
rizing the neighbors of each solution in order to enable comparisons throughout the all
neighborhoods, might become unhandy. Ineffectivity appears since this definition does
not incorporate any notion of the proximity between two neighboring solutions. The re-
sulting problem is now that close solutions might share features corresponding to similar
costs. To tackle this, one might opt to add minimal changes to the characteristics of a
solution, leaving the remaining unaltered (Gendreau and Potvin, 2005).

What remains to be said is that the choice of a neighborhood system is crucial in order
to implement metaheuristics. It is important to structure these neighborhood systems
in such a way that they are both effective and relatively well adapted to the particular
problem (Arora and Gigras, 2013).

San Nah Sze (2007) describe an exponentially growing size of the neighborhood depending
on the problem, resulting in the negative impacts explained above. In other words, the goal
is to either find efficient procedures exploiting the neighborhood in such a way that large
neighborhoods might be chosen. Another possibility would imply designing heuristics in
such a way that the identification of improving neighbors is identified such a way that the
whole neighborhood has not to be taken into consideration (Gendreau and Potvin, 2005).

In order to boost performance, one may also use hybrid strategies. In this setting, we start
with a pool of solutions, composed of both, random and greedy solutions (San Nah Sze,
2007). In some exceptional cases, mainly for specific problems of the real world, our initial
solution may even be pre-modeled by experts (Arora and Gigras, 2013). The way our
neighborhood is modeled depends on the optimization problem itself. The underlying risk
in designing a neighborhood structure lies in the size, quality itself and the computational
time required in order to explore it (Talbi, 2009).

The size of the neighborhood might be dependent on the problem itself, yet mostly small
neighborhoods are used. Those are either created by polynomial functions of the input
sizes, mostly linear or quadratic functions. Although, high-order polynomial functions
might come into consideration as well as exponential functions (Arora and Gigras, 2013).

While with increasing size, we note improved quality of solutions, we must take more
neighbors into consideration for each iteration, resulting in large computational time. We
thus denote the size by the amount of neighbors of a given solution s (Arora and Gigras,

42

8. METAHEURISTICS

2013).

After having introduced the reader to the basic notions, we will now proceed by presenting
the most important metaheuristics based on the already elaborated classification scheme,
starting with individual-based metaheuristics.

8.2 Individual-based Metaheuristics

Also referred to as ’trajectory methods’ or ’S-Metaheuristics’, these metaheuristics aim
to reduce the search space by relying on a neighborhood system which makes it possible
to build a set of neighbor solutions s∗ ∈ N(s) starting from a current solution s. Put
simpler, this approach is to improve a given solution (Gendreau and Potvin, 2005).

The trajectory is then performed by iterative procedures, moving from solution to solution.
The efficiency of these methods lies in tackling various optimization problems in different
domains (Blum and Roli, 2003). Please refer to Figure 8 to get a visualization of the basic
procedures of such methods.

Figure 8: Methodology of individual-based approaches

Individual-based solutions can also contain a memory-component. In this case, both
generation and replacement phases are not only based on the current solution employed,
but rather stored and then applied when selecting new solutions. Examples of both such
methods will be provided in the following (Consoli and Darby-Dowman, 2006).

The common search concepts for all S-metaheuristics are the definition of the neighbor-
hood structure and the determination of the initial solution, crucial for obtaining solutions
for the problem. We will be presenting the most iconic metaheuristics in the following.

8.2.1 Local search methods

Once referring to the classification provided by Osman and Kelly (1996), this class does not
belong exclusively to the group of metaheuristics. Nonetheless, just like other algorithms,
local search methods build upon improving already existing initial solutions, from which
it’s other name, iterative improvement method arises. In the following we assign them

43

8. METAHEURISTICS

to the class of metaheuristics, even though many heuristics apply the same techniques
(Rochat and Taillard, 1995).

Local search methods thus follow the idea of successive improvement: By changing the
solution marginally in every step coherent to our goal of lowering the costs continuously.
The fundamental idea of such a procedure lies in the assumption of a solution space S

which unifies all possible alternatives of action. Further, this method is most often referred
to as Hill Climbing (Henderson et al., 2003).

We start by either by computing or choosing randomly a feasible solution s∗ from the
problem in the problem’s solution space S. If we find a solution for the problem at hand
with a lower cost than the initial solution imposed by us or experts, we update our starting
point. We stop once there is no other solution with lower costs than the incubent (Rochat
and Taillard, 1995).

More formally, by iterative repetition of modifications of the incubent solution s∗ we move
to a neighbor solution, defining the latter as the new candidate if it is superior to s∗. Those
neighbors have been pre-defined by setting up relationships between all possible solutions
in the solution space (Rochat and Taillard, 1995).

Figure 9: Methodology of Local Search algorithms

The benefits of the local search solutions lie in a computational efficient way of finding
good solutions. Yet, one of its major drawback lies in the risk of the algorithm to be
trapped in local optima (Lourenço et al., 2003). This risk results from the algorithm to
have insufficient knowledge on the solution space S. In order to escape this, a local search
method would have to look at all permutations of the locations to be visited, making it
thus inefficient (Rochat and Taillard, 1995).

Further, the global optimal solutions do not necessarily need to be in the same neighbor-

44

8. METAHEURISTICS

hood N(s∗) of the current solution candidate s∗. If no solution with a better condition
on the improvement value is found during the local search process, the candidate is a
local optimum. This is a global optimum only in exceptions, as greedy algorithms, which
build the base of local search methods, can only use information that is available from
the current solution (Johnson and McGeoch, 1997).

Bearing this in mind, several improvements have been introduced, namely Simulated
Annealing (Section 8.2.3 on page 52), Tabu Search (Section 8.2.2 on page 47) and the
Guided Local Search, which will all be analyzed in the respective following sections.

Guided Local Search

This algorithms acts as a master upon a normal Local Search algorithm. In order to start,
one defines features needed for a solution to be listed among candidate solutions. Once
our Local Search gets trapped in some local optima, we select certain features in order to
be penalized (Voudouris and Tsang, 1999). Further we will be referring to this method as
GLS.

We will call those features solution features. Those describe certain kinds of properties or
characteristics needed in order to differentiate between solutions. Take the arcs between
the cities concerning the TSP as an example for such a feature (Voudouris and Tsang,
1999).

In the following, Local Search scatters the solution space using the initially set objective
function plus the accumulated penalties. The most interesting thing in the GLS lies
in the way we select the solution features which will cause a penalty: GLS effectively
distributes the effort in search, favoring promising areas and finding utilities in penalizing
respective features. Possible solutions found by the Local Search are then regularized by
such penalty modification such that they stand in accordance to the gathered information
of both prior or during the search operations (Rochat and Taillard, 1995).

Please refer to Figure 10 on the next page. A normal Local search algorithm would get
trapped in s′. Through the penalties, we worsen the result such that it can proceed to s∗,
another solution being even a global optimum. Put differently. in the GLS procedure the
objective function is changed in a dynamic way. Let further Ii(s) be a dummy which takes
the value 1 if the feature i is present in solution s, otherwise it will be 0. Further, let us
define a new objective function f ′(s). This depends on the original objective function f(s)

summed to a term, which depends in the m pre-defined features, as seen in Equation 8.4.

f ′(s) = f(s) + λ
m∑
i=1

pi × Ii(s) (8.4)

45

8. METAHEURISTICS

Figure 10: Guided Local Search escaping local minima

Let pi denote the penalty parameter. The higher pi, the more importance we delegate to
feature i. Further, let λ denote a regularization parameter which balances the importance
of all features I in relation to the original set in f(s). Research found that good values for
λ are achieved by simply dividing the value of the objective function of a local minimum
by the number of features present in it (Voudouris and Tsang, 1999).

In other words, we augment the objective function by adding penalties. It is utterly
important to specify the aforementioned features. Let us assume the VRP. One feature
could be whether in such a solution candidate tour a vehicle travels immediately from a
pre-defined city A to B (Voudouris and Tsang, 1999).

This utility is further defined as U(s, i) = Ii(s)
ci

1 + pi
iff a feature i is present in a solution

s, otherwise it takes the value 0. Let ci denote the costs of a feature i. This value is
obtained by a heuristic evaluation of the importance relative to all features set (Johnson
and McGeoch, 1997).

The GLS would now associate costs and penalties for each of these features. The former
is often taken out of the objective function. In our example of the VRP costs could simply
be the distance between i and j. In other words, the higher ci the more utility we relate
to this feature. Put differently, the higher the costs, the more utility we have in penalizing
it. If a feature is not even met in the solution, we have no utility in penalizing it. As
we scale the utility by pi, we prevent the algorithm to be looking solely at the costs such
that it gets more sensitive to the previous results from the search history. If the penalties
are frequent, denoted by a high pi, the lower the utility in penalizing it again (Lourenço

46

8. METAHEURISTICS

et al., 2003).

In a local optimum, the feature which brings the highest utility once getting penalized
will be penalized. In this case, we increase pi by the value of 1 thus scaled by λ. In certain
variants the penalties take place with a lower frequency. Within this, the penalties are
then increased by a factor α ∈ [0; 1] (Mills and Tsang, 2000).

By this, the GLS is able to restrict its search space, reducing the search to more promising
areas in the solution space, more specifically only areas with good features, i.e. feature
with lower costs ci. For this to function, penalties are utterly important in order to
prevent the search to put all its effort in one particular region of the solution space. The
algorithm stops, once a solution s∗ is best within the original objective function f (Mills
and Tsang, 2000).

Extensions exist, as setting a threshold value for the penalties. In the case that a penalty
level exceed a pre-defined threshold, we decrease all penalties uniformly. By this, we
boost the performance such that even large problem instances can be solved (Voudouris
and Tsang, 1999).

8.2.2 Tabu Search

Belonging to the group of local search operators as explained in Section 8.2.1 on page 43,
Tabu Search was proposed by Glover (1986) in its modern form. Its main idea can be
deduced from its name. The word tabu (or taboo) namely originates from the aborigines
of Tonga Island as a term for things that cannot be touched because they are considered
sacred (Edelkamp and Schroedl, 2011).

In Tabu Search, the ”states that cannot be touched” are saved in a so-called tabu list.
In this way, the feasible neighborhood that is explored in the local search is restricted.
This helps that the method is not trapped in a local optimum due to adaptive memory
(Edelkamp and Schroedl, 2011).

In general, Tabu Search is a simple local search, which explores the solution space by
making modifications as it moves from one solution to another. This is done in a rather
intelligent way as it incorporates non-static memory and exploration with feedback. Fur-
ther, past moves are added to a tabu list according to a pre-defined criterion. By this we
prevent the algorithm from returning to both recently visited solutions or bad solutions.
Put differently, we prevent the algorithm to end up in a cycles (Gendreau et al., 1994).

After each iteration, we define the best solution s∗ as the new incubent. This is then added
to the tabu list and one element of this very list is then removed in a FIFO order. In
other words, Tabu Search methods are also referred to as dynamic neighborhood searches
(Hansen and Mladenović, 2003)

47

8. METAHEURISTICS

For instance, we could also update the tabu list such that it includes the past k ∈ N
moves or the k most frequent past moves. It is important to note that the tabu list does
not contain any solution, but only search moves. Prospective moves have to be chosen
from outside this tabu list. As a result, we avoid sequences of similar solutions such that
the solution space is more extensively explored (Xu and Kelly, 1996).

If all neighbors are in this tabu list, a move increasing the cost of the solution is accepted.
This is the decisive step differentiating Tabu Search from other local search methods
which would be trapped in this local optimum in such a case. The aspiration criterion
allows to ignore the tabu constraint if there is a move that improves all previous solutions
(Gendreau et al., 1994).

The decision of how to modify the incubent solution s∗ is guided by the information
gathered during the search process. This responsive exploration uses the principles of
intelligent search, i.e. exploiting good solutions while exploring promising new region in
the solution space (Toth and Vigo, 2003). Let us now assume an objective function f(s)

Figure 11: Methodology of Tabu Search algorithms

with s ∈ S denoting a solution in the solution space. The initial procedure resamples local
search, as seen in the previous section, by iteratively moving from one solution to another
until a solution s∗ fulfills all constraints that are found. Each solution has a neighborhood
N(s) ⊂ S. Each other solution is then reached by moving from one solution to another
(Toth and Vigo, 2003).

We consider a solution an improvement if f(s∗) < f(s) for all s ∈ N(s). We further
denote a move value v that is the gains on the new solution by v = f(s∗)− f(s). If v < 0

we call it an improvement, otherwise it is considered a non-improving move. Further,
we might use the methodology of steepest descent. In this, the algorithm proceeds by
only moving in improvement cases until no more improving solutions can be found in the

48

8. METAHEURISTICS

neighborhood of the incubent s∗ (Toth and Vigo, 2003).

A different approach would lie in the best-improving strategy. In this setting, Tabu
Search chooses the best neighbor of the incubent, regardless of v ≥ 0. The drawback
of this strategy lie in the massive computational expenses, as every element of N(s) has
then to be evaluated (Gendreau et al., 1994).

In order to reduce computational effort, we can thus incorporate solution or candidate
lists whereas we narrow the examination areas. Popular on this behalf is the so-called
first-improving strategy. In this setting the algorithm proceeds to the first s∗ for which
f(s∗) < f(s) holds. If no more such s∗ exist, we move to the best non-improving solution
that is the solution for which the difference is least (Gendreau et al., 1994).

The main key of Tabu Search lies in finding the right balance between intensification
and diversification, e.g. balancing the modification of choice rules in order to encourage
move combinations and solution evaluated as ’good’ and the encouragement of searching
unvisited areas (Toth and Vigo, 2003). The algorithm stops, once a stopping criteria is
reached. Please refer to Figure 11 on the preceding page to see a visualization of the
general Tabu Search procedure.

Further, extensions are possible. Randomized Tabu Search, for example, combines the
idea of the tabu list with the selection mechanism applied in BnC, mentioned in the
following. This method can be shown to be asymptotically convergent (Bozkaya et al.,
2003).

We further differentiate between the following Tabu-Searching methods:

• Granular Tabu methods, introduced by (Toth and Vigo, 2003), view long trails as
less likely to be contained in optimal solutions. With this knowledge, all edges with
a greater length than a granulating threshold are not considered, reducing thus the
amount of elements being examined.
Toth and Vigo (2003) defined ν = βc̄ where β denotes a sparsification parameter
ranging from [1.0; 2.0]. In contrast, c̄ denotes the average edge length, which we get
from an a priori fast heuristic. If β ∈ [1.0; 2.0], the authors impose a remaining rate
of edges in the graph of about 10%-20%.
Apart from the theoretic usage, we let β adjust dynamically whenever the algorithm
notes no improvement after a fixed amount of iterations additionally to its periodi-
cally decreasing characteristics.
We can thus generate neighbor solutions, once we limit the amount of edge ex-
changes within the same (or maximally two) routes. For this particular reason,
Toth and Vigo (2003) propose a method in order to be able to examine all potential
exchanges in O(|E(ν)|) time. Let E(ν) = {(i, j) ∈ E : cij ≤ ν}

∪
I hold. Further,

49

8. METAHEURISTICS

Figure 12: Generating a partial solution

let I denote a set of important edges. Those can be routes to the facility or those
belonging to an already computed solution of high quality.

• Adaptive Memory Procedure introduced by Rochat and Taillard (1995), re-
quires a special note: Even though it is mostly used in the field of Tabu Search, it
is not limited to this particular field of operations.
A so-called adaptive memory is a pool of good solutions which instead of being
static, gets to be updated dynamically throughout the solution finding. Similar to
Evolutionary Algorithms introduced in 8.3.1 on page 55, we periodically extract
solutions from this pool in order to combine those in a different way. By this, we
hope to generate new and improved solutions (Rochat and Taillard, 1995).
For the selection of these routes it is utterly important to check whether a customer
is included twice in a solution. For this, the Rochat and Taillard (1995) advise that
there is a possibility for the selection to be ended by partial solutions. Those will
have to be completed. This can be achieved by some kind of construction heuristic,
as shown before.
We included some example in Figure 12. By extracting the red and green tours. we
obtain a partial solution, as two locations remain unvisited. Up to today, this tech-
nique remains a state of the art method when solving a wide range of optimization
problems (Bozkaya et al., 2003). Further, we can differentiate between short and
long memory:

– Short Memory techniques allows the search to continue beyond local optima.
This is possible due to the permissions of non-improving moves as well as the
modification of the neighborhood structure of following solutions. The latter,
denoted by N ′(s) is the result of maintaining only partially the history of the

50

8. METAHEURISTICS

states encountered throughout the search (Bozkaya et al., 2003).
With the tabu element, selected elements of the original neighborhood N(s)

are excluded from N ′(s). In other words, tabu can be considered a dynamic
neighborhood search. A solution s might be visited more than once in this
setting, but the considered neighborhood is not constant (Gendreau et al.,
1994).

– Long Memory enhances the short-memory approach by adding frequency.
Frequency-based memory delivers information that complements the informa-
tion provided by short memory, enhancing the principles by which the selection
of preferred moves is done (Gendreau et al., 2001).
Frequency is then weighted into sub-classes taking into consideration the qual-
ity of the underlying solution. Therefore we define penalties and incentive
values in order to modify the evaluation of the respective move determining
the moves to be selected (Toth and Vigo, 2003).
Let v′ = v× (1+pq) denote the modified value function where v is the original
move value, p the penalty and q the frequency ratio. The crucial factor here
is p, since a p > 0 makes the move less attractive. In other words, in this
setting the likelihood of duplicating a previous neighborhood, once a solution
is revisited or the probability of making choices which repeatedly visit only a
limited amount of neighborhoods is equal to zero.

• Xu and Kelly (1996) introduce a model where the vertices of two routes are
swapped. This yields in a global repositioning of certain vertices in different routes,
resulting in local improved routes and solving network flow models, necessary to be
able to do the reallocation efficiently.
Via approximation we compute the costs of ejection and insertion, whilst the un-
derlying capacity constraints are met.
The route itself is optimized by 3-opt exchanges in the Tabu Search procedure. As
in the adaptive memory process, we allow the parameters to dynamically adjust
throughout the search process. In the following, a pool of best solutions is created
and memorized. Periodically, we use those to re-initiate the search process with
new values on the respective parameters (Xu and Kelly, 1996).
As well as its younger brother, the adaptive memory procedure, this method is a
state of the art methodology on certain implementations, since computational effort
and the parameter tuning tend to be tedious.

Tabu Search ends upon meeting a pre-defined stopping criteria or when the opposite of
the candidate list, the allowed set is empty such that all solutions of the neighborhood

51

8. METAHEURISTICS

N(s) are now on the tabu list.

8.2.3 Simulated Annealing

This class of metaheuristics does not take its inspiration, apart from most metaheuristics,
from nature but from industrial processes, more specifically from metallurgical processes.
Thus it is one of the oldest algorithms belonging to this group of metaheuristics (Aarts
and Korst, 1988).

This procedure was independently discovered by Kirkpatrick et al. (1983) and Černỳ
(1985) (Aarts and Korst, 1988). From its name we can already derive its origin, which is
from the physical process of annealing from the metallurgical industry. In this procedure,
the algorithm mimics thermodynamics, important in the process additional to properties
of the processed metals and the heating respective cooling processes.

The former plays an essential role in order to join the materials while the cooling process
is important in the process of solidification, since the temperature is to be reduced in
such a velocity that the material achieves a firm structure by a minimum input of energy
(Aarts and Korst, 1988).

Although it is considered to be one of the oldest metaheuristics, the inventors knew about
the problem of (meta-)heuristics getting trapped in local minima. To overcome this, they
allow the algorithm to take the opposite approach from the afore-mentioned hill-climbing,
the so-called uphill-move. In this setting, we allow moves which result in solutions worse
than the incubent. To omit the solution to worsen with each move, the authors propose
to set the probability in allowing for such solutions to decrease (Kirkpatrick et al., 1983).

In the beginning of a Simulated Annealing (further denoted as SA) algorithm the authors
depart from an initial solution s, generated either randomly or by pre-computation and
the pre-set temperature T . In the following, at each iteration a new solution s∗ ∈ N(s)

is sampled at random and thus accepted as the new current solution under consideration
of f(s), f(s∗) and the temperature T . Put differently if ∆ = f(s∗) − f(s) < 0. If the
latter statement is not met such that ∆ ≥ 0, s∗ is being chosen as the new solution with
a probability taken from the Boltzman distribution exp(−∆

T
) (Duhr and Braun, 2006).

From the equation we can further note that the probability depends on ∆, on T and its
respective decreasing nature. We will now focus on the latter component. Ass mentioned
above, the decreasing temperature is defined in a cooling schedule. This, defines for every
iteration k the respective value of T . We can thus say that Tk+1 = Q(Tk, k where Q(Tk, k

is a pre-defined function of the temperature for each iteration (Aarts and Korst, 1988).

Research on non-homogeneous Markov chains affirm that for certain condition we obtain
a global minimum smax for f → ∞. Further, we assume Γ to exist in R such that

52

8. METAHEURISTICS

limk→∞p(smax, k) = 1 iff
∑∞

k=1 exp(
Γ

Tk

) =∞.

In other words, a cooling schedule which is able to produce a global optimum needs to
fulfill the above-mentioned equations. In other words,

Tk+1 =
Γ

log(k + k0)

with k0 being a constant. Unfortunately, research has found that such cooling sched-
ules are thus infeasible for practical usage, as the computational effort would break all
boundaries (Henderson et al., 2003).

However, one may apply faster cooling schedules, as one of the most iconic ones following
geometric law: Tk+1 = αTk whereas α ∈ [0; 1]. In other words, we let the temperature
decay exponentially. Further, as we said above, the cooling rule has not to be constant
throughout the search. This is imposed, since we want to achieve a good balance between
exploration and exploitation (Henderson et al., 2003).

Let us assume that we are currently at the beginning of the algorithm. For now our goal
is to sample the search space such that we either leave T constant or let it decrease in a
slow and linear way. Once our sampling is done, we leave T to follow the geometric rule,
as mentioned above, as our goal is now to converge to a local minimum (Aarts and Korst,
1988). Lundy and Mees (1986) opted for a non-monotonic cooling schedule. In this, the
cooling alternated in phases, since we allow the algorithm to ’re-heat’ in order to extend
the exploration and thus reduce the risk of being trapped in local minima.

We could see that for the algorithm to work properly, it is of great importance to come up
with both, a feasible cooling schedule and a feasible initial temperature, which are prone
to the problem at hand. Aarts and Korst (1988) refer to the different search landscapes
which result in different costs in order to escape local minima.

The initial temperature T0 is then determined empirically by initially sampling the search
space by the means of a random walk in order to obtain values for the expected value and
variance of the objective function throughout the search space (Ingber, 2000).

As the original designers, Kirkpatrick et al. (1983) and Černỳ (1985) described SA to
share characteristics with a Markov-chain, e.g. only the previous state matters in order
to evaluate the next one, we assume it to be memory-less. Further, research has adapted
models in which a memory component is adapted, as in Chardaire and Sutter (1995).

We can thus say that the algorithm proceed its search by the means of (i) a random walk
and (ii) an iterative improvement. As in the initial phase of the search is more prone to
be a random walk, it is less biased towards improving a given solution, but more prone
to explore the solution space. Due to the inconsistent change in temperature, the search

53

8. METAHEURISTICS

converges then to a local minimum (Henderson et al., 2003).

The algorithm stops under one of the following conditions (Henderson et al., 2003) for
pre-defined iterations ki.

• The value f(s∗) has not decreased by at least π1% for at least k1 consecutive cycle
of T iterations

• The number of accepted moves has been less than π2% of T for k2 consecutive cycles
of T iterations;

• k3 of T iterations have been executed.

Let us assume the TSP. In this, our goal is to find a global minimum which is the shortest
traveling route. In the setting of the SA we see the problem itself as the material which
is being melted. For this methodology tries to mimic the behavior of atoms, moving
at random in the melted metal, we assume these atomal movements to consist in routes.
Through the modification implied on our behalf, as described above, one might change the
course of these atoms. On colder temperatures, we observe the so-called crystallization,
which stands for the finding of shorter routes. In other words, the material decreases tem-
perature such that the atom’s movement is restricted. Being an atom able to escape the
crystallization is denoted with the above given probability and stands thus for increasing
the route.

Even though important for solving optimization problems, the results of SA are not com-
petitive to simple Tabu Seach algorithms. This can be explained by the long computing
times which arise to the great amount of parameters and the complicated implementation
(Gendreau and Potvin, 2005).

This was only a glimpse to the vast category of ’Individual-based’ metaheuristics where we
focused on the most prominent examples. Further methods may be found, as in Consoli
and Darby-Dowman (2006). The main benefit of these approaches lie in the way the
solution space or an inbound promising region is explored. We will now proceed to its
counterpart, the Population-based approach.

8.3 Population-based Metaheuristics

The underlying goal of Swarm Optimization is to design multi-agent systems in a usually
nature-inspired way. Those consist most often by simple entities, lacking global control
which shall iteratively be improved (Eberhart and Kennedy, 1995).

54

8. METAHEURISTICS

Swarm-based algorithms use simple particles, also referred to as agents, which interact
locally with a certain objective in their respective environment. This implies normally
reaching a food source. Each agent is then assigned to one or more rules without any
centralized structure in order to limit the agents behavior. Through this we induce local
and random interactions of the agents through communication. This results in a so called
intelligent global behavior (Sörensen et al., 2018).

As explained before, through exploitation we are able to expand the search space in such
a way that we find an optimum solution close to a good (near-) optimal solution. As our
knowledge about the search space is rather limited during the initialization, we need to
make sure our swarm continues with the exploitation process to reduce the risk of only
obtaining local optima. With each step we exploit more relatively to exploration, since
we aim to tune the algorithm and thus the solutions (Sörensen et al., 2018).

This is achieved by initializing with a random population which does not have to be
complete since in some examples we allow the particles to set an offspring. In the following,
this population is integrated into the solution space in order to exploit it. This population
can either have memory in order to recall the initial population or remain memory-less.
This procedure is repeated until a pre-defined condition (also known as stopping criterion)
is satisfied (Aydin, 2012).

As mentioned before, the first step is to define an initial population. In this we see
the exploitation nature of the method because of the vast amount of initial agents in a
population. An optimally chosen metaheuristic is diversified in such a manner that the
risk of premature convergence to local optima is reduced (Gendreau and Potvin, 2005).

The exploration and exploitation process are being done in three steps, mostly inspired in
nature as named in the following: Self-adaptation, Cooperation and Competition. During
the first step each agent enhances its own performance before cooperating by transferring
the obtained information. During the last step, agents compete in order to survive and
remain in the system, directing it to find the best solution possible whereas m solutions
are generated per iteration (Gendreau and Potvin, 2005).

In the following we will be introducing the most meaningful metaheuristics belonging to
the group of population-based metaheuristics. As for Section 6 on page 26, we will not
be including every single one of them, just those which brought a new concept or great
innovation.

8.3.1 Evolutionary Computation

Evolutionary computation belong to the first group of population-based metaheuristics
and make use of principles inspired by the evolution of species (Darwin, 1859). In other

55

8. METAHEURISTICS

words, the algorithms in this group try to make the population evolve, so that the individ-
uals continue optimizing a given objective function. The latter can be seen as a measure
to indicate the level of adaptation to the solution space (Maier et al., 2018).

Within these, we differentiate between the following classes: Genetic Algorithms, Dif-
ferential Evolution, Evolutional Strategy and Genetic Programming (Datta et al., 2019).
What unifies all of these methods lies in a so-called selection method, which decides about
the strongest individual to survive and be the base for the next generation (Settles and
Soule, 2005).

This chance of survival is given by a probabilistic function whereas so-called higher fitness
levels lead to an increased probability of survival. Those are usually measured along the
solution’s value in the objective function. As observed in nature, parts of the survivors
are then joined in order to create an offspring through the crossover operator. In order to
guarantee diversity in solutions, we introduce mutation operators which modify the new
individual randomly (Maier et al., 2018).

Different from other methodology presented in this work, one of the main advantages of
this group of methods lie in the need of little knowledge about the system or the problem
itself. Yet if we consider knowledge, it is easily implemented as constraints such that we
boost performance and gain on efficiency. Furthermore, this methods appears to have
the widest range of implementation within the respective problems (Datta et al., 2019).
Please refer to nFigure 13 for a graphical explanation of the algorithm. We will now

Figure 13: Methodology behind Evolutionary Computation

introduce the two most widely used algorithms belonging to the class of Evolutionary
algorithms in the following.

• Genetic Algorithms, as introduced by Holland et al. (1992), are inspired by the
evolution theory of Charles Darwin according to which the fittest individuals are
selected naturally for reproduction and produce the offspring of the next generation

56

8. METAHEURISTICS

which inherits the characteristics of the parents. This notion can be applied to
search problems (Darwin, 1859).
By mimicking the respective events of natural evolution through operators, we ran-
domize the global search process. The Genetic Algorithm then selects the best
current solutions, deleting the remainders. From the former we create an offspring,
aka new solutions. This happens throughout each iterations such that at the end
the authors hope for a perfect offspring, e.g. global optimal solutions (Holland et al.,
1992).
In its pure form the authors used some minimal information input, retrieved from
some heuristic, about the underlying problem domain. The basic components lie
in using a random population of bitstrings X1 = {x1

1, x
1
2, ..., x

1
N} where each one

x1
i is a solution to the problem. By applying the aforementioned operators at each

iteration i = 1, ..., T we achieve evolution by applying k-times the following steps
whereas k ≤ N

2
is the amount of selections per algorithm and T the amount of

generations.
We then select two x1

i for reproduction, usually the best solutions, through a
crossover operator two offspring shall be generated. With only a small probabil-
ity, we apply a random mutation on the offspring.
When this has been done for the maximum of k ≤ N

2
amount of times, we create a

new population X t+1 whereas 2k of the worst solutions from X t and adding 2k of
the new offspring. The best solution after T generations is then the solution of the
algorithm.
As for the VRP, each particle represents one individual and is this represented as a
chain of integers. Each integer, represents either a client or a vehicle.
We thus imply a fitness function feval(s

∗) = fmaxf(s
∗). In this we set f(s) =

totaldistance(s∗)+λ overcapacity(s∗)+µ overtime(s∗). The last two factors, namely
the overtime and overcapacity give us the capacity and tour-time on a maximal al-
lowed value
In a case where both constraints are violated, our objective function f returns the
total distance traveled so far and are penalized in their fitness value for the viola-
tion. Otherwise, we use the weighting parameters λ and µ. The best solutions s

will have a value f(s) close to fmax.
Even though being generally easy to be implemented, drawbacks have to be taken
into account: As in nature, there is no guarantee for optimality. This is explained
by the difficulty in developing a fitness function, suitable to the problem. Although
extensions have been founded, the nature given risk is not to be eliminated (Dréo
et al., 2006).

57

8. METAHEURISTICS

• Genetic Programming is the most recent method in the field of Evolutionary
Computing. The key difference to other techniques in the field of evolutionary
computing lies in the way of presentation: While Genetic algorithms is presented
as a list of actions, genetic programs are represented in tree structure. Therefore
they are not fixed in length and are thus more flexible in use.
Resulting from this, they easily grow on complexity but invalid states are only
produced in exceptional cases. The explicit structure is thus important in order to
entirely avoid operator precedence.
It is thus a popular method, but due to its computational complexity, we will
mention it only for completeness.

8.3.2 Particle Swarm Optimization

Introduced by Eberhart and Kennedy (1995), its name originates from the fact that it
models the behavior of a flock of birds or a school of fish. It was originally proposed to
solve continuous optimization problems but in the following modified in order to be able
to solve combinatorial optimization problems (Clerc, 2004).

Similar to Genetic Algorithms (Section 8.3.1 on page 55) the solution is initialized with
a sample of random solutions. What differentiates both is that we assign each potential
solution a random velocity and then let them move through a so called hyperspace. We will
be referring to these potential solutions as particles. Further, Particle Swarm Optimization
(further denoted as PSO) has no evolution operators such as mutation, while genetic
algorithms, as seen in Section 8.3.1 on page 55, have (Gendreau and Potvin, 2005).

Figure 14: Methodology of PSO

Each particle keeps track of the coordinates of the best solution it has achieved so far.
The optimizer also memorizes the coordinates of the best solution achieved in general by
all particles and saves it. The global best is then tracked by the global version of the PSO
(Gendreau and Potvin, 2005).

58

8. METAHEURISTICS

We will now further elaborate on the mechanics of the algorithm. The initialization
process is defined by distributing the positions randomly to the respective agents. Then,
they start moving in the search space by modifying their velocities and position in the
following (Eberhart and Kennedy, 1995).

We start by assuming a reference problem, which delivers us S = [smin
1 , smax

1]×[smin
2 , smax

2]×
...× [smin

d , smax
d] ⊂ Rd. In case of a missing reference problem, we define specific definitions

(Parsopoulos and Vrahatis, 2002).

We now introduce the particles of the swarm Ai ∈ A with i ∈ I = [1;N], which iteratively
change their position in the search space S. In the agents’ memory the information re-
garding the best solution is kept. The agents move, while their movement is stochastically
biased towards the gained experience from previous moves and promising areas in S found
by members of its swarm. For the swarm to exchange information, the properties of the
individuals converge to one among the whole group (Eberhart and Kennedy, 1995).

One Agent Ai is henceforth characterized by the following four criteria.

• Current Position xt
i where t stands for the respective iteration.

• Velocity vti , responsible for the movement of the particle.

• Particle’s best position pti, which is self-explanatory. In the beginning, this is
set according to the reference problem. The best position is a key factor, since it
effects the velocity vti .
One problem arising from this, is that a particle only looking at its own best position,
would limit the search capability in such a way that the particle would travel in
circles to its best positions visited.

• Information Exchange: To overcome the difficulties pointed out in the last point,
a subset of the swarm is able to communicate, e.g. NBt

i ⊂ I.

In a neighborhood, the best position of a single particle can thus be defined as ptgi =

argminptj ,j∈NBt
i
f(ptj), being the second effect on the factor velocity (Shelokar et al., 2007).

After the communication phase, the velocity and positions of the particle change as fol-
lows:

vti,j = χvti,j + C1(p
t
i,j − xt

i,j) + C2(p
t
gij
− xt

i,j)

xt
i,j = xt

i,j + vt+1
i,j

where χ is denoted the constriction coefficient, responsible for keeping the velocity to a
reasonable level, further C1 and C2 are uniformly distributed terms, being acceleration

59

8. METAHEURISTICS

constants. They control the attraction of a particle’s position towards the neighborhood’s
best position (Parsopoulos and Vrahatis, 2002).

The first term, related to C1 is called the cognitive term, since it involves only the infor-
mation set by the particle itself, the term related to C2 is the social term, e.g. denotes
the communication between the particles (Parsopoulos and Vrahatis, 2002). The position
updates happen via

pt+1
i =

xt+1
i , if f(xt+1

i) ≤ f(pti)

pti, otherwise.
(8.5)

The algorithm stops, when a certain stopping criteria is met. This can be a time limit or
a limit set for the amounts of iterations t ∈ T . A global optima gbesti,j is thus defined,
as the minimum of the respective best positions of the particles. With the help of a
local search strategy the solutions are then improved. The respective best positions of a
particle per iteration and the global best are stored in a memory component (Parsopoulos
and Vrahatis, 2002).

Eberhart and Kennedy (1995) propose in their original framework the global model to
give every particle a friend particle. This model has been improved by so called local
methods, which had a slower convergence rate and would therefore not be trapped in a
local minima (Parsopoulos and Vrahatis, 2002).

This method benefits from the few hyperparameters it employs. The method is so versatile
that it can be used in many settings with only minor adjustments and is thus so popular
that many extensions have been proposed Eberhart and Kennedy (1995). Those mainly
aim to solve the VRP. We leave it to the reader to explore those as in Golden et al. (2008),
Toth and Vigo (2002) or Settles and Soule (2005).

The PSOs we note several advantages. Through is foundation lies in swarm intelligent
behavior, its use is not limited. Further, due to the missing overlapping and mutation
operations, the amount of calculation is reduced. In order to find feasible solution, we
can rely on the respective velocities of the particles. As only the best particles survive
and are thus able to transfer information, solution finding is rather fast. Additionally,
the few calculations needed to be done in this setting are simple compared to similar
developing methods. Nonetheless, we find some drawbacks. One of the main criticism
lies in the partial optimism. Further, the field where we can apply this metaheuristic is
rather restricted (Ting et al., 2005).

60

8. METAHEURISTICS

8.3.3 Ant Colony Optimization

The Ant Colony Optimization (further denoted as ACO) was developed by Dorigo and
Di Caro (1999) and was inspired by the experiments on real ants conducted by Goss et al.
(1989). It tries to mimic the behavior of ants on their way on search for food to find the
shortest path.

What makes this setting so intriguing is the fact that these animals are blind and their
movement resembles a random walk. While walking, ants deposit pheromones leaving a
chemical trace on the route they chose. Those appear to be very important, since they
play an important role in the field of communication of the ants whenever food sources
have been found. In other words if an ant comes along a way, following the pheromone
trail, it can expect to be getting food (Dorigo and Di Caro, 1999).

It is important to mention that ants do not follow each and every pheromone track they
find, since the strength in pheromone odor varies such that the ant might end up following
a path with a lower level of pheromones or even opting for a new path at all. However, it
remains to be said that the probability of following a path increases with the odor, e.g.
the amount of pheromones deposited on it (Goss et al., 1989).

One major problem is that less reinforced by the insects, the pheromone trails are not
meant to stay forever, since they tend to gradually evaporate. In other words, trails which
no longer lead to food will be used less frequently, leading the ants to follow either the
routes maintained with a high level of pheromone or to find new paths and eventually
food sources. This is also one of the main advantages of this method, since it is keen to
adapt to dynamic environments and is thus optimal for the usage in the field of urban
logistics (Dorigo and Di Caro, 1999).

Another problem is that each ant, due to its simple moving and behavior is limited to
find solutions of reasonable quality only. This is tackled by its colony, as through the
global cooperation and communication within the ants better solutions can be found. To
improve the understanding of this method, we will be examining a simple example, given
in Figure 15.

In this figure, we can see that the ants choose
path A, even though it seems to be the less
efficient path. But a few ants decide to opt
against the more frequented path and de-
cide for the other trail. This one is advanta-
geous, as the ants retrieve the food via path
B faster, meaning that the

Figure 15: Ant Movement

pheromone trail is updated more frequently and is thus less prone to lose the pheromone

61

8. METAHEURISTICS

trails due to evaporation which is the awaited destiny of path A such that only path B

will be kept in use (Goss et al., 1989).

The probability of using a path is then given by

pi,j =


(τi, jα)(ζβi,j)∑
k∈Ω(τi, j

α)(ζβi,j)
if vj ∈ Ω

0 otherwise.

Let Ω = {vj ∈ V where vj is yet to be visited }
∪
{v0} and vj denoting each city. Further,

τ denotes the amount of pheromones placed on the edge of i and j, ζ the desirability of
the edge i and j (normally we assume it to be scaled with the distances between the edges,
e.g. 1

di,j
. Last but not least, let α denote the attractivity of the path ahead, and β the

independence of a single ant (Dorigo and Di Caro, 1999).

As presented we let each ant construct a solution by initiating from an empty solution s[].
At each step i we add a component ki of the set of viable solutions of the neighborhood
N(s). Using the above mentioned probabilities a solution is now chosen. Further, for each
solution pair (i; j) there will be one separate probability, which can thus be explained by
the varying levels of pheromone τi,j deposited on the track (Blum, 2005).

As in the Tabu Search, we can boost efficiency by thus creating candidate lists. These
are computed ex-ante. One of the most prominent candidate list procedures lies in listing
all available nearest neighbors (Blum, 2005).

As noted before, the most crucial factor lies in the pheromone trails, e.g their evaporation
or renewal. The latter happens, whenever an ant chooses that path such that τi,j gets
updated to τi,j = (1 − ρ)τi,j + ∆τi,j whereas ρ ∈ [0; 1] is a pre-set evaporation rate and
∆τi,j the deposited pheromone. The latter is usually 1

Lk
, with k denoting an ant and

Lk being the costs of travel. Usually we set the costs to be equal to the distance. The
first part of the equation (1 − ρ)τi,j is further denoted as the evaporation rate (Colorni
et al., 1992). Please refer to Figure 16 on the following page for a visualization of the
methodology behind the ACO.

One drawback of this model lies in the direct unapplicability for combinatorial optimiza-
tion problems once applied in its original form, since the associated pheromone levels
could link directly to solutions. In order to overcome this, one must have full knowledge
of the solution space. As our goal is to find an unknown optimal solution, this is rather
impossible . For this, we consider the pheromone levels only to be only components of
the solution. Those are then assembled in order to come up with a viable solution (Blum,
2005).

Further, we will explain how to solve the VRP using the aforementioned techniques.

62

8. METAHEURISTICS

Figure 16: Methodology of ACO

Initially, we set the amount m of ants equal to the amount of customers, supposing they
are located at different locations each. In the following, we set a maximal amount of
iterations. During those, the ants generate new solutions and thus create candidate lists,
by sorting the solutions according to the distances. For the respective routes, the ants
choose the cities they want to visit, until every city has been visited. On every node, the
decision is then to not choose a solution that would lead to unfeasible solutions (such as
exceeding the capacity or maximal route length constraints). If no other possibility is
left, the ant returns to the depot and starts anew (Dorigo and Di Caro, 1999).

Concerning the selection of a city that has yet not been visited, the ant on the one hand
looks at the pheromone trail in order to get a glimpse of the routes quality. On the
other hand, through the ζi,j parameter, as explained above. In the following we use the
2-opt heuristic to improve the routes. We then let the ants move again, updating their
pheromone trails (Dorigo and Di Caro, 1999).

Due to its success, many extensions have been proposed, which will be elucidated only
shortly, since the aim of this work lies in giving a general overview of existent heuristics.

• Ant System: Being the first, the pheromonical update rule is denoted as τnewij =

ρτ oldij +
∑σ1

µ=1 ∆τµij + σ∆τ ∗ij (Dorigo and Di Caro, 1999). Let ρ ∈ [0; 1] denote the
trail’s persistence. From this, we deduce (1− ρ) to be the evaporation rate.
Only in the case that (vi, vj) has been used by the µ-th best ant, it gets a pheromone
increase of namely ∆τµij. This is then equal to (σµ)/Lµ. In the case that the µ-th
best ant has opted for another arc, it is 0.
Once considering all arc, which are in the set of arcs of the best solutions are then
emphasized. In the model, we assume an amount of σ elitist ants to have used these
arcs such that the pheromone intensity is increased by ∆τ ∗ij. This is then equal to
1/L∗ if the arc is part of the set of the so far best solution Dorigo and Di Caro

63

8. METAHEURISTICS

(1999).

• Ant Colony System: As the first major improvement, we stark making use of a
so called ’pseudorandom proportional rule’. This describes that each ant’s move-
ment now depends on a random and uniformly distributed variable q ∈ [0; 1] and
an additional parameter q0 (Montemanni et al., 2005).
If q ≤ q0, we choose the component which maximizes τi,j × ζβi,j, otherwise the equa-
tions from the traditional model hold. Through this, the exploitation of pheromone
information is favored.
On the other hand, we use a local pheromone update to limit exploitation. This
can be described as a pheromone update performed by each ant after each step such
that it gets applied only on the last edge. We describe this as τi,j = (1−ϕ)τi,j+ϕτ0.
The new parameters ϕ ∈ [0, 1] describe the pheromone deposition and τ0 the initial
pheromone level set.
Further, our update functions is now τi,j = (1− ρ)τi,j + ρ∆τ besti,j . The last part, de-
scribes the pheromone deposition of the best ant (Dorigo and Gambardella, 1997).

• MAX-MIN Ant System: As the name suggest, we set limits to the amount of
pheromone deposition τmin

i,j < ti,j < τmax
i,j . As the pheromone trails get updated,

one would converge fast to only local optima. In order to tackle this problem, we
set the update in such a way that in the case of τi,j < τmin

i,j , τi,j is set to the new
minimum. Analogously in the opposite case (Stützle and Hoos, 2000).

Even though it belongs to one of the most used and modified methods, according to the
amount of Google Scholar citations, it has shown to be present drawbacks. As we have
seen, theoretical analysis is rather difficult, compared to other (meta-)heuristics presented
in this work. Further, our probability distribution changes throughout the iterations such
that we can say the research to be rather experimental than from theoretical nature.
Nonetheless, the algorithm converges to solutions, yet it is unknown how long this takes
as the algorithm is usually stopped before final convergence is achieved (Blum, 2005).

On the other hand, due to the feedback system, results are obtained swiftly once positive
feedback is obtained. For simpler problems, as the TSP, it shows to be an efficient solver.
Last but not least, due to its dynamic nature, dynamic applications become solvable
(Blum, 2005).

8.3.4 Artificial Bee Colony

In this setting we imagine a colony of bees consisting of three types of the animal, which
mimic the foraging behavior observed in nature and according to their respective food

64

8. METAHEURISTICS

selection process: The employed bees, onlocker bees and scout bees. Their goal is to
maximize the amount of nectar transported to their hive (Karaboga, 2005). This method
will further be denotes as ABC .

We associate the first group with all information belonging to the specific food sources
and with the work on the collection and transportation of the food to the hive. Such
that the onlocker bees watch the initial group in order to deduce if a certain food source
is not worthy anymore, e.g. the food source gets exhausted. These two are so called
local searches which means that their search for food is based on a probabilistic and
deterministic selection what holds mainly for the group of onlocker bees. The last group,
the scouts, look for food in a randomized way without any previously acquired knowledge
(Karaboga and Basturk, 2007).

The decision of which food source to be chosen is based on the amount of nectar found. In
order to be able to do so, the scouts memorize the previous amount found and comparing
them. If the newer source shows a higher amount of nectar, the bees update their memory,
as the new solution is “better“. If the source appears to have less nectar, the bee counts
the amount of searches around that source in their memory. In the beginning we set 50%
of the bees being employed, the same amount of unemployed bees and one scout only
Karaboga (2005).

In this setting, each food source is seen as one solution candidate in the solution space,
while the amount of nectar denotes the quality of this food source. We set the amount of
food source equal to the amount of bees. The quality of the former is then set depending
on the value of the objective function f on that position. We will further denote this by
its fitness value (Kong et al., 2012).

We further differentiate between three phases (Karaboga, 2005):

• Employed Bees Phase: In this, scouts search for new solutions s∗ aka food
sources whilst food sources with more nectar from a solution’s neighborhood N(s∗)
are preferred. The location of a solution s∗ is then memorized. When finding a new
food source, their respective fitness levels are then compared by applying a greedy
technique.
The scouts become employed bees and start ’extracting food’, returning to their hive
in order to share the information with the onlockers in the hive. In the following,
the employed bees can either return to their food source or settle.

• Onlocker Bees Phase: By the means of probabilistic choice, the onlockers choose
the food source. This is biased by the information provided by the scouts. The
selection is then based on the respective fitness levels.
Once a selection has been made, the onlocker distinguish a neighborhood source.

65

8. METAHEURISTICS

The respective fitness value is then calculated and compared.

• Scout Bee Phase: In this, we differentiate between onlocker bees, whose solution
can not be improved inside a limited amount of trials or iterations become scouts.
The solutions found up to then, are then abandoned. A new random search begins.

This three steps are then repeated for a limited set of iterations. Refer to Figure 17 for a
visual insight.

Figure 17: Methodology of ABC

By this, the food selection is based o the group‘s experience and their respective nest
mates, repositioning the latter since communication between the bees is possible (Karaboga,
2005).

In the beginning we create a food source population by

si,j = xmin
j + rand(0; 1)(smax

j − smin
j)

where rand(0; 1) is a function to which a random number in the interval [0; 1] is assigned
to. By

s∗i,j = si,j + ϕi,j(si,j − xs,j)

the employed bee conducts its search around the food source from their memory. If s∗i,j
is better than si,j, we update the bee’s memory. The parameter k ∈ [1, FS] is a random
index, and FS denoted the amount of food sources. And j ∈ [1, D] represents a random

66

8. METAHEURISTICS

index, too. Further D stands for the dimension of the problem at hand (Karaboga and
Basturk, 2007).

The communication between the employed and unemployed bees is done by assigning each
solution found a normalized probability based on their fitness (incorporated as a quality
measure), as shown in the next equation:

pi =
fitnessi∑CS
i=1 fitnessi

(8.6)

We could thereby show that the ABC balances both operations, exploration and exploita-
tion, incorporating local and global search methods to obtain the best results possible
(Karaboga, 2005).

Being one of the most recent metaheuristics, it impresses with its simplicity, flexibility and
robustness. Due to the swarm behavior, it is thus able to explore local solutions handling
the objective costs simultaneously. All in all, we can affirm it to be, once the parameters
have been set, easy to be implemented for a huge amount of problem instances. Yet, every
new parameter need to undergo fitness tests as we require a new and more evaluation of
the objective function, making it thus slow in sequential processing

Different from the trajectory methods, we saw that the main forces behind population-
based metaheuristics lie in the possibility of recombination of current solutions in order
to obtain new ones. Even though powerful, we saw that the amount of parameter to be
tuned increased, what makes the construction of the algorithm a quite complex task. On
the other side, they prove to have their strength in slower convergence such that the risk
of being trapped in local minima gets reduced.

For the Population-based metaheuristics we see due to the random explorations (caused
mainly by the crossover coefficient) it is able to penetrate areas in the solution space
normally not found by local search. Yet, the great amount of parameters necessary to
be tuned in order to make the algorithm work is great. For the random exploration,
performance replication is difficult, too.

In order to tackle the problems related to both groups of metaheuristics, we will try to
take the respective benefits of the groups merging them into hybrid (meta-)heuristics, as
explained in the following section.

67

9. HYBRIDS

9 Hybrids

Further it is possible to combine the aforementioned metaheuristics (and others not named
in this work) to form more powerful and efficient algorithms. One must further note that
in the group of population-based metaheuristics, techniques as in the ACO and ABC the
hybridization is implicitly given, as often a Local Search operator is already implemented
inside the code (Blum et al., 2011).

Now, we try to join the benefits, exposed in the respective ends of Sections 8.2 on page 43
and 8.3 on page 54 to form new and more powerful (meta-)heuristics. Research concen-
trated on the essence of merging existing (meta-)heuristics is vast. Yet, we differentiate
between and will respectively explain the two groups, which combine (meta-)heuristics
solely, as explained briefly in the following.

9.1 Collaborative Hybrids

In this setting, we combine one or more algorithms in order to obtain better results either
in parallel or sequential manner. We can further weight the parts being used. In the
normal case we distribute the weights equally among the (meta-)heuristics applied (Hogg
and Williams, 1993).

As already mentioned, we are able to differentiate three distinct mechanisms, explained
in the following.

a) Multi-Stage Methods: Refer to Figure 18 on the following page. We initiate the
operation with Algorithm I, which is used as a global optimizer. After shrinking the
search space, Algorithm II performs a local search on the restricted solution space.
In other words, our walk in the search space gets to be more structured than in the
separated manner (Ting et al., 2005).
Commonly a population-based algorithms is used as the first algorithm, as those
methods, as already shown, obtain feasible solutions by recombining solutions found
by parts of the population finding promising areas in the search space. In other
words, the exploitation done by the swarm is able to reduce the solution space such
that further processing is eased. Individual-based algorithms do this recombination
via one or more recombination operators, being more efficient in finding solutions,
once the search space has already been reduced (Ting et al., 2005).

b) Sequential Methods: In this setting we let both algorithms run simultaneously,
until we achieve convergence. For simplicity reasons, both algorithms are thus sup-
posed to run the same amount of iterations Ciornei and Kyriakides (2011).

68

9. HYBRIDS

Figure 18: Methodology of Multi-stage Collaborative Hybrids

In the case of using two population-based metaheuristics, we achieve a better ex-
ploitation of the solution space in a more diverse manner than simply increasing
the amount of particles of the respective swarm (Shelokar et al., 2007).
Please refer to Figure 19 for a graphical representation of the sequential hybrid
running for two (meta-)heuristics.

Figure 19: Methodology of Sequential Collaborative Hybrids

c) Parallel Collaborative Methods: In this setting, both algorithms run simulta-
neously whilst modifying the same pre-set hybrid population (refer to Figure 20).
We thus allow one of the algorithms to be executed on an ex-ante defined time on
the algorithm in order to pre-process it (Crainic and Toulouse, 2002).
Please refer to Figure 20 for a graphical representation of the sequential hybrid
running for two (meta-)heuristics.

Figure 20: Methodology of Parallel Collaborative Hybrids

69

9. HYBRIDS

As most of these methods have never been used in the field of logistics, we name one
example per sub-group such that the reader is able to deepen his knowledge on his own.
Please refer to the Table 3 for examples.

Area Example As seen in...
Multi-Stage Collaborative
Methods

Merge General algorithm
and Particle Swarm Opti-
mizer

Ting et al. (2006)

Sequential Collaborative
Methods

Sequential run of Genetic
Algortihm and ACO

Ciornei and Kyriakides
(2011)

Parallel Collaborative
Methods

PSO and ACO Shelokar et al. (2007)

Table 3: Examples for Collaborative Hybrids

9.2 Integrative Hybrids

For the core idea of this type of hybrids, we divide our algorithms in two: A master and
a sub-ordinate heuristic, the slave. The latter is then embedded in the first. The weight
with which we do the embedding is normally chosen to range from 10% to 20% (Lozano
and García-Martínez, 2010).

To be able to perform this embedding, there is the urge to have an operator, the ma-
nipulatory operator from the sub-ordinate to the master heuristic. This has been done
by several authors, as shown in Table 4 on the next page. We now set to differentiate
between the distribution of the respective manipulation, as follows.

• Full Manipulation: In this setting, at each iteration we take modifications on the
population. Usually we apply this, by assigning one algorithm as a sub-routine into
the source code (Kong et al., 2012).

Figure 21: Methodology of Full Manipulation Integrative Hybrids

• Partial Manipulation: In this setting, we accelerate the population partially with
local search methods. Therefore, we just have to guarantee the right portion and
thus the candidates to be accelerated by the slave(Tien and Li, 2013).

As most of these methods have never been used in the field of logistics, we again name
only one example per sub-group such that the reader can enlarge upon interesting topics
on his own. Please refer to the Table 4 on the following page for examples.

70

9. HYBRIDS

Figure 22: Methodology of Partial Manipulation Integrative Hybrids

Area Example As seen in...
Full Manipulation Hybrid ABC Kong et al. (2012)
Partial Manipulation Hybrid Taguchi-Chaos of

ABC
Tien and Li (2013)

Table 4: Examples for Integrative Hybrids

9.3 Other Hybrids

For now, we have just analyzed hybridization across (meta-)heuristics. Further, research
has already implemented other ways of enhancing (meta-)heuristics, as the combination
of exact methods and (meta-)heuristics (Blum et al., 2011).

Even though we have seen exact methods to lack in general performance mainly driven
by computational time for routing, they are able to perform well on tasks apart from
that topic resulting in more robust results. As we noted earlier, exact methods and
their strength in attacking hard constraints problems and (meta-)heuristics in optimizing
objective functions could be joined (Raidl, 2006).

In those, we use the prominent constraint programming. The main importance is now to
define the areas in which the algorithms operate, one being the master and the other the
slave (Blum et al., 2011).

Further, one may also use so-called math-heuristics. In those (meta-)heuristics are com-
bined with mathematical programming techniques. The latter can be described as using
mathematical models to enhance overall performance. In recent research, the already de-
fined dynamic programming, relaxation, decomposition techniques or tree searches might
be used to enhance (meta-)heuristics. Being out of the scope of this research, we leave it
to the reader to investigate those methods by listing exemplary literature in the following
(Maniezzo et al. (2009), Congram et al. (2002), Blum (2005), Raidl (2006)).

9.4 Gnowee

We will now present an even more complicated hybrid method, Gnowee, which was pro-
posed for solving the TSP. Being a reference to the aboriginal goddess of the sun, the

71

9. HYBRIDS

recently published Gnowee algorithm proposed by Bevins and Slaybaugh (2019) aims to
combine a set of diverse, robust heuristics to solve computational optimization problems.
The authors promise it to converge rapidly to nearly global optima. This rapid conversion
to a minimum fitness threshold is assumed to be thus an at least nearly global optimum,
which is not being evaluated.

In the setting of this hybrid, the authors combine in a new way diverse, coherent and
robust (meta-)heuristics. By this, the algorithm is designed to find the right balance of
exploration and exploitation. Gnowee is as such a hybrid consisting of Neighborhood
Search, Hill Climbing, accepting negative moves, Multi Start, Adaptive Memory Pro-
gramming, Population-based Search, Intermediate Search, Directional Search and Vari-
able Neighborhood Search.

While in Neighborhood Search the current solution is only changed step-wise, or equiva-
lently one variable, the current solution is changed by only accepting moves to a better
solution in Hill Climbing. By also allowing for negative moves, the solution space is more
thoroughly explored. Multi-Start lets the search process restart from a different starting
location, once it converged to a local optimum. Population-Based Search has been ex-
tensively discussed in Section 8.3 on page 54. Intermediate Search focuses on exploring
the space between two highly performing solutions. Further, Directional Search meth-
ods learn the direction that a current solution can be improved in, typically based on
gradients. Next, Variable Neighborhood Search extends basic Neighborhood Search by
letting the definition of the neighborhood vary over the iterations for a wider exploration
of the solution space. Finally, Search Space Mapping constructs a map or partitions of
the solution space by incorporating expert knowledge.

By combining all these approaches, the authors were able to balance the different purposes
of the methods, when being used separately, namely: balancing directional search and
thus accepting negative moves. While the former is used to achieve rapid convergence,
the latter aims to increase the chance to explore the solution space. Conclusively, it is less
susceptible to local optima than the methods it incorporates. In order to accelerate the
search process, the authors provide a parallelized implementation of their code (Bevins
and Slaybaugh, 2019).

9.5 Concluding Remarks

Even though we named the many advantages of hybrids in the beginning of the Section 9
on page 68, there are some drawbacks apart from simple naming conventions, presented
in the following.

As already noticed, we could see that the implementation of single metaheuristics might be

72

9. HYBRIDS

simpler than for exact methods, yet there are a few challenges left. When combining two or
more metaheuristics, those difficulties tend to rise. The more complicated the structure
of the algorithm, the more complicated it gets gaining insights on why the underlying
method performs that well, turning it more and more into a black-box-method (Ting
et al., 2005).

We can clearly observe this in the structure of the algorithm itself: As we create the need
for extra components, the complexity of the algorithm rises as the amount of parameters
increase, making it more difficult to tune the latter properly. This increased complexity
puts stumbling blocks on the path of acceptance between researchers. Whilst analyzing
the fields of citations on ’GoogleScholar’, we can see that among hybrid methods, integra-
tive hybrids seem to redeem most of the aforementioned success (Ciornei and Kyriakides,
2011).

Additionally, one of the main benefits of (meta-)heuristics was the easy implementation,
which gets lost due to the increasing amount of parameters being more prone to errors.
Further, the interpretation and analysis should be taken with much caution (Settles and
Soule, 2005).

Furthermore it is noticeable that the convergence rate and computational speed improve
on the use of hybrids. Yet, mainly the former is a measure needed to be analyzed sep-
arately, as the respective authors graphed it with respect to the number of iterations
needed not the convergence speed itself. As we had already shown, hybrids tend to use
more iterations, as these are done implicitly (Shelokar et al., 2007).

Further, we can say that research in the field of integrative hybrids is by far more recent
than that of its counterpart, the collaborative hybrids. One explanation could lie both in
the wider acceptance of the former from research and its simplicity in application.

73

10. STATISTICAL LEARNING METHODS

10 Statistical Learning Methods

We initiate this by introducing one of the basic foundations as will be seen in the following.
In this our aim is to build functions capable of predicting by establishing links between
the variables in use (Hastie et al., 2005).

In our case, we use these predictions for the costs of an edge for a given state. This pre-
diction is necessary, as the actual costs will only be revealed at the moment of realization
(Arnau et al., 2018).

For the range of statistical learning methods is vast, we have to choose the right technique
to solve the particular problem. As in the heuristics setting presented in the following, we
need to deal with a trade-off between computational time, accuracy and interpretability
(Hastie et al., 2005).

For this we will set our focus to machine learning methods which have the attention of
recent research. Within these methods, the reinforcement learning appears most suitable
to tackling the problems presented in Section 4 on page 8.

10.1 Machine Learning

Machine learning (further denoted as ML) denotes the field in data science and artificial
intelligence and is one example in the field of statistical learning methods, in which algo-
rithms laid upon datasets lead an engine to learn (Hastie et al., 2005). The result of this
lies in the capability of the engine to make predictions based on the underlying dataset
used for the learning process. In order to classify the wide range of machine learning
algorithms, three basic ML paradigms have been established.

We differentiate between:

• Supervised Learning. This is the broadest field in ML. The basic concept of this
method is a supervisor which gives direct feedback on the results of the algorithms.
This is achieved by specifying an error function in order determine whether the
algorithm is approaching or deviating from a pre-defined goal. In other words, we
can assume this method to be based on a ”trial and error” function (Kotsiantis
et al., 2007). Possible application areas range from simple regression tasks up to
classification.

• Unsupervised Learning. In unsupervised learning, the dataset is analyzed with
respect to unknown patterns which cannot be unambiguously evaluated. As there
is no feedback per se, the algorithm learns by identifying commonalities in the data
upon which it reacts. Among others, this paradigm covers dimensionality reduction

74

10. STATISTICAL LEARNING METHODS

and clustering. The main goals of this field lie in anomaly detection, dimension
reduction, time-series modeling, and latent variable models (Hastie et al., 2005).

• Semi-supervised Learning. This is similar to supervised learning, but as we use
this technique in fields where large amounts of unsampled data is available, not all
examples have an output value.

Further we will be taking a closer look at Reinforcement learning, since this methodology
has been widely used in order to either tackle problems as the traveling salesman or vehicle
problem as well as helping heuristic methods, as can be seen in Section 11 on page 78.

10.2 Reinforcement Learning

In operations research, we typically make use of reinforcement learning algorithms belong-
ing to the class of supervised-learning (Hastie et al., 2005). In these kinds of methods, we
assume that an agent in a given state can decide among a finite set of actions. Dependent
on the decision, the state and the set of possible actions changes. The agent can further
get an immediate reward, such as a result of the respective action, whilst maximizing
the expected reward is the objective of the agent. The reinforcement is often modeled as
stochastic Markov decision process (Kaelbling et al., 1996).

In reinforcement learning, we let an agent learn the situation-dependent effects of his
actions. To be more specific, we let an agent operate in a pre-specified environment. We
let him then choose among a set of environment-state and agent-state-dependent actions.
Based on the states and the taken action, the agent receives an immediate reward and
the environment and the agent states change accordingly. The agent aims to maximize
his cumulative reward (Kaelbling et al., 1996).

Even though ML arose as new innovative field in the recent decades, it cannot be clearly
distinguished from traditional methods such as prominent (meta-)heuristics. For example,
the ACO can be interpreted as distributed reinforcement learning technique as has be seen
in Section 8.3.3 on page 61.

In the following, we present an exemplary method which stresses the incorporation of
reinforcement learning even more.

10.3 Ant-Q

The most prominent learnheuristic was introduced by Gambardella and Dorigo (1995),
a family of algorithms building upon the well-established reinforcement learning method
Q-learning (Watkins and Dayan, 1992), and which were then applied to the solution of
symmetric and asymmetric instances of the TSP.

75

10. STATISTICAL LEARNING METHODS

This Q-Learning, being part of the group of reinforcement methods, aims to recognize
or learn how to perform the best action for every respective state visited by the system.
The underlying methodology is the so-called trial and error. The agent chooses one plan
of action and receives immediate and direct feedback, based on a reward r(i, a, j) plus
the value of the upcoming state for this. The latter is then used to update the agents
database. Let further i denote the state the agent is in, a the action taken and j the
upcoming state (Kaelbling et al., 1996).

The database consists of a so-called Q-factor, which is established for every pair of state
and respective action. The procedure is now as follows: Whenever the agent gathers
positive feedback on the action, the respective Q-factors value increases. Analogously we
find a decreasing value on negative feedback. Further, the value attributed to the Q-factor
is also the value attributed to the following state j and is defined by the maximum Q-
factor of that state. In the case of having two actions in a state, we assume the maximum
of both Q-factors to be the value of that state (Kaelbling et al., 1996).

In this setting, we once more define the problem as a graph, yet the nodes stand now
for low-level heuristics related to directional edges. In the initial setting, we disperse our
fixed amount of ants on those nodes such that they start their way.

This procedure can be described as follows, each ant decides which other node to visit,
applying the heuristic to the problem at hand. As in the classical ACO, each ant deposits
pheromones on the track such that other ants are able to follow. For this to be efficient,
we further assume the ants to do this kind of exploration in an improved manner, e.g.
having a learning mechanism which is then able to guide the search.

Put differently, the ants interact with the solution environment by taking into account
previous results such that they try to predict future utilities of exploring certain nodes.
During this, we are able to gradually construct sequences of those heuristics.

Once applied to the TSP, we have our problem specification as already explained in
Section 4.2 on page 12. Let us further define the positive and real number Ant-Q-Value
AQi,j, which is similar to the traditional Q-value form the Q-learning algorithm. This
denotes the usefulness of making a move from node i to node j.

Further, we have have the heuristic value of an edge denoted with HEi,j. This one is
used, when we want to evaluate the quality of the moves. In the example of the TSP we
take the inverse of the distance as a measure.

In the following the authors describe an ant k, responsible to create a tour. We assume
all ants k ∈ K to have memory such that in the latter there is a list Jk(i), denoting the
nodes which have yet not been visited where i denoted the node. By that we can say
this algorithm to have a memory component. This list is needed, since our aim lies in

76

10. STATISTICAL LEARNING METHODS

proposing a tour which consists of visiting all nodes only once.

The movement of an ant k is then guided by the following rule:

j =

argmaxu∈Jk(i){[AQi,u]
δ[HEi,u]

β} if q ≤ q0

J , otherwise.
(10.1)

Let q ∈ [0; 1] be a randomly and uniformly distributed value, q0 a parameter, denoting
the probability of making a random choice such that a high value on q0 imposes a smaller
probability in making a random choice. The symbols δ and β are weighting parameters
weighting the relative importance of the respective AQ and HE parameters. Further,
J denotes a random variable selected according to the probability distribution of the
aforementioned parameters AQ and HE.

As stated before, the respective AQ-values get updated by AQi,j ← (1 − α)AQi,j +

α(∆AQi,j + γmaxz∈Jk(i)AQs,z). Let further α denote the learning step and γ a discount
factor. Usually, ∆AQi,j is zero except in cases when all agents have completed their
respective tours. This is normally biased towards the tour length, e.g. 1

Lk
. By the list,

denoted in Jk(i) we have a memory component.

We now explain this in the setting of the VRP. As proposed initially, we have a set of n
cities and the respective distances di,j. Following Equation 10.1, the vehicles located in i

are now supposed to decide which city to visit next (Gambardella and Dorigo, 1995).

We then assign an initial AQ-value and place our vehicles on a city i. We further create
the list of unvisited cities Jk. In the following, each vehicle moves and the respective
AQ-values are thus updated. This will be repeated until all cities have been visited and
thus have returned to the depot (Gambardella and Dorigo, 1995).

After the return, the tour length per vehicle is calculated such that only the AQ-values of
the globally best tours get updates. In the last step, Gambardella and Dorigo (1995) check
for the stopping criteria, which is usually a fixed amount of iterations. In cases where
the optimal tour is reached earlier, the algorithm stops before the maximum amount of
iterations is reached.

Gambardella and Dorigo (1995) imposed this algorithm for the TSP, yet the implemen-
tation for the VRP should be possible, too, yet not employed by researchers for this
purpose.

77

11. LEARNHEURISTICS

11 Learnheuristics

Whilst we could see that exact methods of those NP-hard combinatorial optimization
problems require either a simplification of the problem or addressing prohibitive com-
puting times. Following (meta-)heuristics, it could be shown that the optimality of the
provided solution may not be granted, yet are beneficial in terms of computational time.
Additionally, those methods, especially in terms of metaheuristics, are applicable with
more variety, since they are not problem specific and can therefore be used under more
realistic conditions (Sörensen et al., 2018).

One different approach would be to combine machine learning features, as introduced
in Section 10 on page 74, with the previously explained idea of meta-heuristics. This is
thus an extension of the hybrid models introduced in Section 9 on page 68 (Calvet et al.,
2017). Due to its importance in recent research we dedicate the field of ’learnheuristics’
a separate chapter.

A special benefit arising from the use of learnheuristics is the possibility in solving com-
binatorial optimization problems with dynamic inputs. Those are special, principally in
practical use, e.g. real world conditions, since the problem inputs, either the constraints
or the objective function itself, are not fixed upfront (Calvet et al., 2017).

The latter might surplus vary, possibly not randomly, but for the statistical learning
method in a predictable way. This results from the matter of fact that we build the
solution partially by the means of an iterative process, based on heuristic procedures
(Arnau et al., 2018).

Furthermore, the variability in the constraints is plausible, since for example a consumer’s
willingness to pay a specific price for a certain product varies with the availability of the
latter, as this implies a rise in the price, which is nothing but basic economics (Hazlitt,
2010).

Mainly because of this variation in input factors, the coordination between the learning
and metaheuristic mechanisms must be set such that at each iteration, the learning pro-
cedure is trained and updates within the input are then implemented in the following by
(meta-)heuristics (Arnau et al., 2018).

We differentiate between methods where ML is used to improve (meta-)heuristics and
the other way around. Both methods will be elucidated shortly in the following sections
(Calvet et al., 2017).

78

11. LEARNHEURISTICS

11.1 Hyperheuristics

The term hyperheuristics was initially founded by Cowling et al. (2000). These methods
aim for a simplification of the search space, e.g. reducing the search space, boosting
efficiency and are thus part of the group where ML is used to enhance (meta-)heuristics.

While in the field of (meta-)heuristics our search lied in the search space of solutions to
the problem at hand, hyper-heuristics aim to find the best (meta-)heuristics within the
search space of (meta-)heuristics. For this, not only single techniques are searched but
also in which sequence those (meta-)heuristics shall be applied. Therefore not the solution
to the problem is the goal but rather the methodology in order to do so.

We thus say that these operations work on a higher level than metaheuristics, as seen in
Figure 7 on page 40. Technically, hyperheuristics choose which low-level (meta-) heuristic
is to be used for any given instance for the type of underlying exploration of the search
space. Cowling et al. (2000) introduced this methodology in order to solve scheduling
problems.

We can further differentiate between hyperheuristics able to select or even to generate
own or even new heuristics. Please refer to Figure 23 on the next page. The algorithm is
thus able to learn, via a feedback mechanism. The latter can be achieved in three distinct
forms (Epitropakis and Burke, 2018):

• Online Learning: These types of hyperheuristics do the learning while the algo-
rithm is solving the problem at hand. In this approach, we have two separate search
spaces: the space with the sequences of the respective heuristics and the solution
space of the problem itself whereas the former is usually a subset of the latter.
Throughout the search procedure, the algorithm is able to learn.

• Offline Learning: These types of hyperheuristics gather knowledge in the form of
rules or programs, from an a priori set of training instances, capable of generalizing
the solving of the problems at hand. The learning in this setting gathers knowledge
and tests it on a test set which is composed of unseen instances.

• No Learning: As the name suggests, no learning is implemented in this setting.

Further, one can differentiate between the analysis itself. Pertubative methods consider
the whole solution space, changing them by modification of one or even several compo-
nents. Constructive methods on the other hand consider the solution space only partially
such that one or more components of the respective solutions are missing. By this, the
algorithm needs to extend the missing solutions (Calvet et al., 2017).

The procedure for the high-level heuristics is to efficiently search the solution space,
restarting it with different sequences. For this the already introduced hybrids could

79

11. LEARNHEURISTICS

Figure 23: Methodology of Hyperheuristics

come in handy, as those might conduct the search in both solution spaces simultaneously
(Epitropakis and Burke, 2018).

Being introduced recently to the field of logistics, Garrido and Castro (2009) were the
first to use hyperheuristics in the field of VRP. Based on the already explained hill-
climbing methods, they search the heuristic space consisting of sequences of constructive
and pertubative pairs of low-level heuristics. In the following, the authors apply those
sequences constructing or even improving already obtained partial solutions.

In a follow-up analysis, the authors improved their results, by augmenting the methodol-
ogy (Garrido and Riff, 2010). Their method was able compete with some renown heuristics
proposed in the previous sections.

As the implementation of hyperheuristics is not usual in the field of logistics problems,
we name it for completeness and leave it for further research. Not to be forgotten is the
fact that through these techniques, we might be able to broaden the level of generality of
search methodologies, even of (meta-)heuristics.

11.2 Specifically-located Hybridizations

Crucial for a (meta-)heuristic’s performance is the tuning of the parameters involved.
Before machine learning techniques were merged with (meta-)heuristics, researchers did
not tune their parameter, but used values generated through exhaustive testing or simply
copying values used in similar problem settings (Birattari, 2004).

One can achieve this by controlling the parameters directly, implying deterministic or
adaptive rules. The latter bases its results on some sort of feedback function, as in Jeong

80

11. LEARNHEURISTICS

et al. (2009) or Battiti and Brunato (2010). Another approach would lie in tuning the
parameters. By this, the algorithm is said to be robust enough such that it is comparable
to values from comparable problems with fixed parameters. Last but not least, we combine
the aforementioned techniques and fix the parameters but letting them be specific for each
instance. All in all we can say that this kind of techniques is not often used in solving
logistic problems, due to their complexity in application. Yet, once the algorithms have
been adapted to certain problems, they become powerful solvers of the aforementioned
problems (Battiti and Brunato, 2010).

In Table 5, we review the two main groups and compare their methodology. This might
be used on further research to access the right method for the right problems.

Global Hybrids Specifical Hybrids
Reduction of Search Space Fine Tuning of Metaheuristic parameters
Selection of algorithms Initialization, Evaluation
Implementation of Hyper-heuristics Populations Management
Cooperative Strategies Operators
New Metaheuristics Local Search

Table 5: Key differences between global and specifical hybrids of ML and (meta-)heuristics

11.3 Neural Networks for Learnheuristics

Neural networks (NN) are one of the most popular state-of-the-art machine learning meth-
ods. They are widely used in the most diverse data processing areas: speech recognition,
image classification and machine translation. In simple terms, neural networks can be de-
scribed as successive transformed regressions. This means that over several layers where
each layer contains one regression, the input data is firstly multiplied by weight matrices,
secondly modified by the addition of a bias, thirdly non-linearly transformed and eventu-
ally taken as the input of a following layer if the corresponding layer is not the last layer
of the neural network. Please refer to Haykin (1994) for a thorough introduction to the
topic.

Special neural networks which take sequential data as input are called recurrent neural
networks (RNNs). These networks are characterized by a chain-like architecture that is the
successive concatenation of simple NNs. Simple RNNs typically only condition on recent
information such that each neural network in the chain incorporates knowledge gained
by the preceding neural networks. However, RNNs tend to forget over long periods. To
encounter this problem, Hochreiter and Schmidhuber (1997) introduce Long Short Term
Memory (LSTM) networks, as special kind of RNNs. Their signifying property is to
remember information over long periods.

81

11. LEARNHEURISTICS

The different dimensions of the input to a neural network can have different importance for
predicting the output. When a neural network has, for instance, to differentiate between
a picture from a cat and a picture of a dog, it should not focus so much on the fact that
both have four legs, but more on the different aspects of the pets’ heads. As this example
shows, it is reasonable to let the neural network put varying focus, respectively attention,
to the different dimensions of its input. This is made possible by the inclusion of attention
mechanisms (Vaswani et al., 2017). In technical terms, attention defines a distribution
over the weight parameters such that they become random variables and are not longer
fixed parameters.

In order to understand how NNs can be applied to routing problems, we have to consider
the aim of routing to be to generate an optimal sequence of locations. This optimal
sequence is typically learned based on supoptimal tours, which can also be expressed as
sequences. As such, we aim for LSTM networks which transform sequences into sequences.
Sequence to sequence models are based on an encoder-decoder architecture. This means
that a first LSTM finds a latent representation of the input sequence (it thus encodes the
input sequence), while a second LSTM decodes the latent representation. That means it
transforms the latent representation back to a sequence.

Pointer networks, introduced by Vinyals et al. (2015), are neural networks which transform
a sequence by yielding a succession of pointers to the elements of the input series. In
contrast to sequence to sequence models, they thus do not output a sequence. The models
perform better when augmented by attention.

Bello et al. (2016) were one of the first to introduce the implementation of neural networks
to solve the TSP. They train a LSTM model that predicts a distribution over different
location permutations given a list of all locations. A permutation is here one possible
tour which includes each location exactly once. The model parameters are learned by
reinforcement learning where the negative tour length is given as a reward to the agent.
In particular, Bello et al. (2016) use policy gradient learning where the agent learns
parameters to characterize the action he takes conditional on his and the environment’s
state. The conditional action decision is also referred to as policy. When the parameters
are learned by improving them in the direction of the reward, we speak of actor-critic
policy gradient methods since the reward serves as a critic to the agent’s policy (the actor).
The neural network is first learned on a training dataset. For instance, its performance
is optimized for solving the TSP on a set of several graphs with 20 nodes. When the
parameters of the NN are learned, the model can be seen as a fixed metaheuristic. The
network can thus simply be applied on another graph with 20 nodes which it has never
seen before.

Recently, Kool et al. (2018) extended the model proposed by Bello et al. (2016). The

82

11. LEARNHEURISTICS

authors train this model using REINFORCE with an effective greedy rollout baseline.
This means that they specify the training procedure of the NNs in more detail.

The benefit of this kind of learnheuristics lies especially in its flexibility to learn strong
heuristics for the most diverse settings.

Further, we might also use metaheuristics in order to improve machine-learning. In the
field of supervised learning, we can enhance the machine learning algorithms in both its
main functions, classification and regression. In the unsupervised field, improvements can
be achieved in the fields of clustering and rule mining. As these fields do not belong to
the group of logistics problem solving, we won’t provide further explanation on the topics.
We advise the reader to discover the following literature in order to gain knowledge on
this field of learnheuristics: Stein et al. (2005), Candelieri (2011) and Turner and Miller
(2014)

83

12. EXPERIMENTAL SETUP

12 Experimental Setup

For our own empirical study, we propose as similar simulation setup as presented by
Leyerer et al. (2018).

12.1 Problem Definition

In order to cover as wide a range of different settings as possible, we will take a look on
the major routing problem concepts introduced in Section 4 on page 8. These are the TSP
and the VRP. We regard the VRP without capacity constraints such that we minimize
the length of longest route taken by one vehicle instead of the total distance covered. We
regard a simple model where goods do not have to be submitted at a given time.

We won’t be considering location problems, such as facility location problems, since these
are not as common as routing problems in urban logistics. We suggest that further
research can evaluate our simulation setup for location problems.

We focus on the most important part in the delivery process, the last-mile. For concepts
of today’s business needs could be explored as well: For example food deliveries have to
operate on a first-comes-first-serves basis such that ready meals are delivered before they
get cold. The mathematical intuition behind this problem has already been given, refer
to 4.3 on page 14.

12.2 Dataset

For the comparison of theoretical properties of (meta-)heuristics, it is most useful to
evaluate their performance on simulated data. Nonetheless, practitioners, one of the main
users of the applied methods, are often not interested in these theoretical properties of
(meta-)heuristics. Instead, they value those methods more which work best in practice.
For this reason, we also measure the performance of the different algorithms on a real
world data example with use case. In the following, we will be giving more insight to the
datasets used.

12.2.1 Simulated Data

In a first step, we evaluate the performance of the optimization algorithms on simulated
data for the TSP. For this purpose, we simulate respectively ten completely connected
graphs with 30, 70 and 100 nodes. The x- as well as the y-coordinates of the nodes are
drawn independently from a uniform distribution over the interval 0 to 100. The distances
between locations are calculated using the Euclidean distance

√
(x2 − x1)2 + (y2 − y1)2 ,

84

12. EXPERIMENTAL SETUP

which results in minimizing the air route between two coordinates (x1, y1) and (x2, y2).

However, there is no special reason to use this definition. Other possible distance measures
include, for instance, the Manhattan distance |x2 − x1| + |y2 − y1| which measures the
distance between two points along axes at right angles. This is inspired by the gridlike
street geography of the New York borough of Manhattan.

The distances are then rounded to integers. The first simulated coordinate in each graph
is set equal to the depot. We simply set the cost to be the distance between locations.

In the following we will exemplary present the obtained distances for one graph with ten
nodes in a distance matrix.

0 35.54 85.02 54.23 80.30 37.67 21.09 38.39 54.55 44.68

35.54 0 49.88 25.89 44.78 23.66 19.36 3.53 19.40 35.27

85.02 49.88 0 46.87 13.10 63.67 65.70 46.75 30.52 71.50

54.23 25.89 46.75 0 35.90 19.89 44.03 26.42 26.94 24.94

80.30 44.78 13.10 35.90 0 54.3 62.7 42.2 26.9 60.9

37.67 23.66 63.67 19.89 54.35 0 34.46 26.53 37.07 11.65

21.09 19.36 65.70 44.03 62.71 34.46 0 20.95 35.89 45.21

38.39 3.53 46.75 26.42 42.20 26.53 20.95 0 16.22 38.04

54.55 19.40 30.52 26.94 26.98 37.07 35.89 16.22 0 47.20

44.68 35.27 71.50 24.94 60.93 11.65 45.21 38.04 47.20 0


12.2.2 Real World Data

In order to incorporate an empirical application, we consider the logistic concepts in the
German city Hanover, the capital of Lower Saxony. With a total area of 204.01 km2 and
over 500,000 inhabitants, Hanover is the largest city in Lower Saxony.

The problem we want to solve is the following. In order to promote the annual event ’IWI-
Grillen’ from the institute of business informatics at the Leibniz University Hanover, we
would like to distribute flyers in all university campus in the local area. Let us further
assume that the amount of flyers in our case is infinite and stored at the IWI-institute
itself, being our depot.

We pre-selected 38 locations, which are all part of the campus of the universities in
Hanover. As our aim is to have as many guests as possible, we even consider campus
seemingly out of range, such as in the north-western of Hanover in ’Garbsen’ or the
southeastern campus in ’Südstadt’.

In order to reduce the fossil fuel burn and consequently pollution, as being one of the
main problems encountered in the fields of logistics, bicycles are our vehicle of choice.
The capacity constraint is thus a simple backpack, which will not be specified further,

85

12. EXPERIMENTAL SETUP

since we do not impose a demand to be supplied, but simply placing the flyers on the
most frequented places on the campus. We further employ students to make the delivery.
As those seem not to have good fitness conditions, we aim to reduce the longest tour. In

Figure 24: Location of Hanover universities in a map extracted from Google Maps

Figure 24, we illustrated a map of the catchment area. The localizers (marked in red)
denote the locations we will be departing to in our empirical study. Those are the locations
of 38 university campus and the depot, marked in orange, in Hanover and Garbsen.

In Figure 24 the cluster in the northern part of the city catches our attention (’Nordstadt’).
This area has been augmented, as denoted by the magnifying glass. Even then, the
clustering is still existent such that those areas will most probably be served in one
setting, due to the proximity of the locations.

We extract the traveling time using the Google Distance Matrix API. We use the default
parameters given on https://developers.google.com/maps/documentation/distance-
matrix/intro#DistanceMatrixRequests with the change that we set the mode to bicy-
cling. One reason for us to choose the Google API is that Google considers usual traffic
conditions and averages those for bicycle drivers.

86

https://developers.google.com/maps/documentation/distance-matrix/intro#DistanceMatrixRequests
https://developers.google.com/maps/documentation/distance-matrix/intro#DistanceMatrixRequests

12. EXPERIMENTAL SETUP

12.3 Methods

It is not in the scope of this paper to compare all available methods, but to focus on
a comparison of the most influential algorithms. We chose at least one algorithm per
exact method, heuristic and metaheuristic respectively. Namely, we considered ’Branch-
and-Cut’, ’Greedy Descent’, ’Guided Local Search’, ’Simulated Annealing’, ’Tabu Search’,
’Ant Colony’, the recently added ’Gweeno’ and the ’Learnheuristics imposed by Kool et al.
(2018)’.

Further we let the respective method solve the problem at hand, measuring both, the time
needed in order to come up with a feasible solution and the distance of or time needed to
finish the longest route obtained by the method.

12.4 Evaluation Criteria

We will be evaluating the quality of the solutions, based on the following criteria proposed
by Talbi (2009):

• Quality of the solution: This measurement is usually used to get a glimpse on
the precision of the algorithm. For this, we might take a previously calculated global
optimum based on an exact algorithm as a comparative measure. If the latter is
not available, we might take the comparison to the lower respectively upper bound
solutions. Those are normally easy to compute and will not be elucidated any fur-
ther in this work.
Another method would be the comparison to the best known solutions, available
through open libraries or to those solutions applied in practical terms, since those
seem to be the most viable. We consider the difference between the distance de-
termined by the heuristics and metaheuristics compared to the exact algorithms as
the error rate.

• Computational Effort: denotes the actual time the algorithm needed in order to
come up with solutions. Mostly used is the measure in wall-clock-time or CPU time.
We can further differentiate with or without input/output and pre-processing/post-
processing time. Analyzing this key number alone is not practical, since this depends
on the hardware components, such as RAM-memory. We measure the time in
elapsed wall-clock seconds using CPUs.

• Ordinal Data Analysis: In this, we compare all n implemented (meta-)heuristics
for a given number of conducted experiments m. We then distribute a set of ordinal
values ok with k ∈ [1;m]. In one experimental setting, let ok denote the rank of

87

12. EXPERIMENTAL SETUP

a (meta-)heuristic to its competitors where ok ∈ [1;n]. Let there then be a single
linear order O, which summarizes all m linear orders ok, yielding in the final ranking.

12.5 Further Implementation Details

Our code is mainly implemented in Python since this programming language has gained
huge popularity in machine learning in the past years (Grus, 2019). For further details,
please refer to the code in the Appendix B on page 122 or the GitHub repository available
under https://github.com/JonathanIgler/Urban-Logistics-Routing-Problem.

We utilize the Google OR Tools (Google, 2019) commonly used in literature (Nazari
et al., 2018, e.g.). These tools are used for Greedy Descent, GLS, SA, Tabu Search.
PSO is implemented using the pyswarm library. The ACO is implemented from the
ACO-Pants package. Further, the BnC algorithm is implemented using the mip pack-
age. We set the maximal number of seconds of training to be 3,000. If this limit is
reached, BnC does no longer give an exact solution but is also only just a heuristic.
For Gnowee, we use the GitHub repository made available by the authors on https:
//github.com/SlaybaughLab/Gnowee/. Since it requires manual hyperparameter tun-
ing, we hypertune gh.maxGens over 500, 750 and 1,000, gh.stallLimit over 10,000,
15,000 and 20,000 and gh.optConTol over 0.001, 0.01 and 0.1. The results are pre-
sented for the best parameter constellation. The learnheuristic proposed by Kool et al.
(2018) was implemented based on the repository of the authors available on https:
//github.com/wouterkool/attention-learn-to-route. We train and validate the
networks based on respectively 10,000 randomly generated instances.

The simulations are solved on a standard computer with an Intel Core i5 processor with
3,1 GHz (3.7 GHz Turbo) and 8 GB LPDDR3 under macOS 10.16.6. We set the random
seed of the number generator such that all results of this paper can be replicated.

We note that there are also other solvers freely available such as the Concorde TSP solver
(Cook, 2016). This algorithm has been used to solve the TSP for up to 85,900 cities.
Since Concorde is written in the ANSI C programming language and not in Python, we
opted for Google OR tools.

88

https://github.com/JonathanIgler/Urban-Logistics-Routing-Problem
https://github.com/SlaybaughLab/Gnowee/
https://github.com/SlaybaughLab/Gnowee/
https://github.com/wouterkool/attention-learn-to-route
https://github.com/wouterkool/attention-learn-to-route

13. RESULTS

13 Results

In the following, we will be presenting our results for both study cases. We will thus begin
with the simulated data.

13.1 Simulated Data

To begin with, we display an exemplary simulated graph in Figure 25. This is also the
graph corresponding to the distance matrix shown in Subsection 12.2.1 on page 84. The
depot is denoted as the yellow dot. If we use, for instance, the Tabu Search method

20 40 60 80
0

10

20

30

40

Figure 25: Optimal route computed by the Tabu Search algorithm for an exemplary
simulated graph with ten nodes

to solve the corresponding TSP, we obtain the optimal route which is also illustrated in
Figure 25. All in all, we get a total distance of 214.13 kilometers to be traveled.

If we run the algorithm again, we obtain another optimal route and total distance. For this
reason, we display average results over ten runs in the following such that the influence of
outliers in the solution space is mitigated. In order to ensure clear results, in the following
plots we only illustrated the most important algorithms as pointed out earlier.

Please refer to the Table 6 on the following page and Table 7 on the next page for an
overview on the average computational time and average total distance achieved when
solving the TSP on the simulated dataset. For the overall averages we summed up the
values in question and divided this sum by the amount of methods, e.g. 8.

While the Greedy approach delivers results above average in no time due to its simplicity,
the GLS outperforms it when it comes to the solution itself, e.g. the distance to be

89

13. RESULTS

Method/number of nodes 10 30 100
Branch-and-cut 0.33 133.43 3000.00
Greedy Descent 0.01 0.05 0.76

Guided Local Search 30.00 30.00 30.00
Simulated Annealing 238.85 214.20 30.00

Tabu Search 30.00 174.00 30.00
Ant Colony 0.07 0.4427 4.22

Gnowee 3.09 20.10 171.05
Learnheuristic (Kool et al., 2018) 5,738 25,748 -

Overall Average 755.04 3,290.03 466.58

Table 6: Average computational time in seconds for solving the TSP on the simulated
data

Method/number of nodes 10 30 100
Branch-and-cut 286.07 467.12 961.66
Greedy Descent 286.07 472.00 816.78

Guided Local Search 286.07 467.12 796.05
Simulated Annealing 286.07 474.33 821.64

Tabu Search 286.07 470.05 810.24
Ant Colony 286.26 539.91 1210.49

Gnowee 286.07 467.12 805.76
Learnheuristic (Kool et al., 2018) 286.07 469.23 820,47

Overall Average 286.10 478.36 880.38

Table 7: Average total distance in kilometers for the TSP on the simulated data

traveled for larger amounts of nodes. Yet, the computational effort was more elaborate
than the Greedy approach, which remained equal for all amounts of nodes.

The Tabu Search, with reasonable to good results, has a time peak at 30 nodes with
decreasing time for 100 nodes, as seen in Figure 27 on page 93. One possible explanation
could be that the algorithm got stuck in a local minimum for the latter case such that it
was able to give feasible results above average in less time.

Out of all methods, we see SA was both, the most time inefficient heuristic whilst reporting
the second longest tours. As pointed out, this might be due to a not well tuned cooling
schedule, which gets noticeable mainly for larger graphs.

Noticeable was the performance for the ACO: Even though it is the overall second fastest
algorithm, its tour length was only optimal for the minimal case of ten nodes. From 30
nodes on, the tours given by this method proved to be far beyond the average of 484.68
and 891.04 km respectively. We could explain this by the matter of fact of the artificial
ants not to necessarily travel the shortest route existent, but merely include parts of
this route in their final solution such that we have segments of an optimal route which
altogether show to be of rather worse quality.

90

13. RESULTS

Overall, the Gweeno delivered the shortest route for most instances. and was beaten by
the GLS only. As seen in Table 7 on the previous page, the route proposed by it was
even shorter than the route of the exact method in the case of 100 nodes. This is thus
explained by the fact that we programmed the exact method to stop after 3,000 seconds
such that we took the best result obtained so far. Thus we can say that BnC has worked
similarly to a common heuristic in this case.

However with increasing amount of nodes, the Gweeno continued delivering efficient paths
but lacked in computational efficiency. One possible explanation lies in the immense
amount of calculations and heuristics to be applied such that computational time increases
exponentially.

As for the learnheuristic imposed by Kool et al. (2018), we achieve average results, yet is
the computational time considerably high. For the instance of 100 nodes, the algorithm
did not achieve any results, since it took too long. The explanation for such is simple.
In the learnheuristic setting, the algorithm needs to be trained initially on a training set
consisting of different graphs with the same amount of edges. For such big amounts of
data one usually opts to train the algorithm on GPU, yet we were able to train it on CPU
only. Note that the computational time required does not increase exponentially with the
number of nodes. This results from the fact that a major part of the computations is
taken by the training of the neural networks.

In the following, we impose a VRP to the simulated data. In Figure 26 on the following
page, we depict the relationships on the simulated dataset between the longest distance
taken by a vehicle and the number of nodes of the graph for solving the VRP with one
to five vehicles. The arrangement is such that it has to be read row-wise, such that one
vehicle is added column-wise, e.g. starting with one vehicle in the top left corner and
finishing with five vehicles in the bottom left corner.

Trivially, the longest distance of a vehicle decreases with the number of vehicles employed,
independently from the method chosen as seen on the shrinking values of y-axis on the
respective graphical representations. But with increasing nodes the longest distances of
a vehicle respectively rise.

Through all implied methods we notice seemingly no differences, apart from the case
where we employed five vehicles. In this, Tabu Search might be distributing the most
efficient distances to the remaining four vehicles such that the last vehicle remains with
the longest tour, consisting of non-improving solutions only. We have reason to believe
so, as in the overall tour lengths the algorithm performed above average.

Further, we note that the distances seem to be equal for up to 3 vehicles among all meth-
ods, but diverges from that moment on. Such that for the maximum amount of vehicles,

91

13. RESULTS

20 40 60 80 100

400

600

800

20 40 60 80 100
200

300

400

20 40 60 80 100
200

300

20 40 60 80 100

200

250

20 40 60 80 100

200

250

300
Greedy Descent
Guided Local Search
Simulated Annealing
Tabu Search

Figure 26: Relationships between longest distance taken by one vehicle on the simulated
dataset and number of nodes of the graph for most important methods
We start with a VRP consisting of only one vehicle, e.g. TSP, on the upper left corner. For each row we
regard column-wise one additional vehicle such that in the last graph we look at the results of a VRP

consisting of five vehicles.

Tabu Search emerges as the worst solution finder. Always within the best solutions,
consistently for all categories we find the GLS and SA.

In Figure 27 on the next page, we analogously illustrate the relationships between the
computation time of running the heuristics and the number of nodes. One might note
that in some cases the computational time needed decreased with an increasing among of
notes. This can be explained by the matter of fact that for larger instances the problem
aggravates such that the algorithms get stuck in local minima, delivering solutions in less
time.

For Table 8 on the following page, we ranked the methodologies separately for each node
composition, e.g. 10, 30, 100 nodes and the respective amounts of vahicles, e.g. 1, 2, 3, 4
and 5. In order to validate, we assigned values from [1; 8], the higher the points the better
the method in ranking. For the overall rating, we summed up all points and compared
the results. As for the separate case, the more points an algorithm had gathered, the
higher its ranking.

For the quality measure we only took the distances in kilometers into consideration. For

92

13. RESULTS

20 40 60 80 100
0

100

200

20 40 60 80 100
0

250

500

20 40 60 80 100
0

20

20 40 60 80 100
0

20

20 40 60 80 100
0

10

20
Greedy Descent
Guided Local Search
Simulated Annealing
Tabu Search

Figure 27: Relationships between computational time in elapsed seconds for training on
the simulated dataset and number of nodes of the graph
We start with a VRP consisting of only 1 vehicle, e.g. TSP, on the upper left corner. For each row we

add column-wise one vehicle such that in the last graph we look at a VRP consisting of 5 vehicles.

computational effort, the measured wall-clock-time was compared. If it came to a clash
between two methods, we opted for the most efficient respective better tour solution.

Between the Branch-and-cut and Tabu Search it came to a clash, when comparing the
quality. As both had a score of 18, we looked at their ranking on the computational effort
ranking. As Branch-and-cut was more time demanding, it took the worse ranking, e.g.
rank 4.

Analysis/Method BnC Greedy GLS SA Tabu ACO Gweeno Learn
Quality 3 6 1 7 3 8 2 5

Computational Effort 6 1 3 7 5 2 4 8
Overall Ranking 5 1 2 7 4 6 3 8

Table 8: Ranking on the simulated dataset

13.2 Real World Dataset

For results on the real world dataset, please refer to Figure 28 on the next page for the
time needed for the longest tour on the real world dataset conditional on the number of

93

13. RESULTS

1 2 3 4 5
Number of bicycles

6000

8000

10000

12000

14000
Lo

ng
es

t t
im

e
ne

ed
ed

 p
er

 b
icy

cle
 in

 se
co

nd
s

Greedy Descent
Guided Local Search
Simulated Annealing
Tabu Search
ACO

Figure 28: Time needed for the longest tour on the real world dataset

bicycles. In Figure 29 on the following page we depict the computational time of the
algorithms also depending on the number of bicycles. The figures only depict results for
the standard metaheuristics in order to ensure clarity of the illustrations. An overview of
all results on the real world dataset can be found in Table 9 on the next page.

All methods generated solutions of similar quality when it comes to the longest routes
employed such that only for one and two vehicles employed slight differences arise such
that Tabu Search delivers the best results throughout the process. ACO follows the same
trend, yet has computed longer tours. We can conclude that considering the maximum
time spent on bicycles has been computed with only slight differences among all (meta-
)heuristics.

As we pay our driver based on the minutes driven, we can see that opting for more than
four bicycles is implausible, since the marginal product of doing so is minimal or not even
visible.

With respect to the efficiency, we are able to say that Greedy Descent outperforms all
remaining methods (Figure 29 on the following page). While GLS remains at constant
computational time, the remaining methods oscillate in their efficiency. If we imposed
more constraints, we might therefore say that both, GLS and SA would take the same com-
putational time into account. For the other algorithms such a statement is not possible,
as the remaining methods do not seem to be consistent in the respective computational
time neede.

Yet, BnC, Gnowee and the learnheuristic were the most time inefficient algorithms. An

94

13. RESULTS

29.999

30.000

30.001

30.002

30.003

1 2 3 4 5
Number of bicycles

0.5

1.0

1.5

 E
la
ps
ed
 ti
m
e
in
 se

co
nd
s

Greedy Descent
Guided Local Search
Simulated Annealing
Tabu Search
ACO

Figure 29: Computational time of algorithms on the real world dataset

Method/Number of vehicles 1 2 3 4 5
Branch-and-cut 11,041 - - - -
Greedy Descent 12,965 7,402 5,391 4,974 4,974

Guided Local Search 12,883 7,335 5,275 4,973 4,973
Simulated Annealing 12,928 7,377 5,391 4,974 4,974

Tabu Search 12,901 7,056 5,324 4,973 4,973
Ant Colony 15,146 7,991 6,021 5,283 5,142

Gnowee 11,040 - - - -
Learnheuristic (Kool et al., 2018) 12,573 - - - -

Table 9: Longest traveling time of a single path in seconds on the real world dataset

explanation seems trivial: For the BnC the limitation rises due to the matter of fact of
it being an exact method such that in the case of obtaining results, we can guarantee
their optimality yet the computational time that has to be taken is the largest. Gnowee
however, makes use of such a vast amount of (meta-)heuristics that is has difficulties for
larger instances. Nonetheless, as seen for the simulated data in Section 13.1 on page 89, the
results when obtained, belonged to the three best in terms of quality. For the learnheuristic
one has to take the training into account, as explained in the previous section.

The BnC algorithm found the optimal solution after 856.83 seconds already. However, it
iterates for more than 50 minutes for the remaining vehicle combinations until it termi-
nates because of the imposed time limitations. Further, we opted against the calculation
for the subsequent amounts of vehicles, since this would exceed the pre-set time boundaries
of 3,000 seconda2.

2For the calculation of 2 vehicles, the algorithm stopped after four hours

95

13. RESULTS

We can thus see that the overall traveling time obtained through the exact method is by
far the lowest compared to the methods applied in (meta-)heuristics. Such that for one
vehicle, its route is 38% lower than the overall traveling time of the route computed by the
best performing (meta-)heuristic, namely the GLS. Yet, for the Gnowee we obtained the
same result as BnC. However, this method has the same problems as the exact-method:
Due to the vast amounts of (meta-)heuristics hybridized in this method, adding further
constraints, as increasing the amount of vehicles, results in exponential time growth as
already seen for the simulated data as in Section 13.1 on page 89.

The same problems arose for the learnheuristic imposed by Kool et al. (2018). As the
computational effort exceeded our limited CPU, we were only able to compute results for
the single-vehicle case. This result is further of average quality.

For Table 10, we ranked the methodologies separately for the different amount of vehicles
imposed, e.g. 1, 2, 3, 4 or 5 bicycles. In order to validate, we assigned values from
[1; 8], the higher the points the better the method in ranking. For the overall rating, we
summed up all points and compared the results. As for the separate case, the more points
an algorithm had gathered, the higher its ranking.

For the quality measure we only took the distances in kilometer of the longest tour into
consideration. For the measure of computational effort, the measured wall-clock-time was
compared. If it came to a clash between two methods, we opted for the most efficient
respective better tour solution.

Once more we had a clash. In this case between the Greedy Descent and the GLS. As
both were strong in terms of their solution’s quality, Greedy showed itself to be more time
efficient and thus leading the overall ranking.

Analysis/Method BnC Greedy GLS SA Tabu ACO Gweeno Learn
Quality 6 4 1 3 2 7 5 8

Computational Effort 7 1 4 3 5 2 6 8
Overall Ranking 7 1 2 3 4 5 6 8

Table 10: Ranking on the real world dataset

As to our technical limitation, the statement of this ranking is also limited. Due to
the missing values of BnC, Gweeno and the learnheuristic, we were not able to compare
those results in terms of quality, yet we know that all of the three lack in computational
efficiency. Even if the results obtained through one of these methods would have been of
superb quality, they would nonetheless have turned out to respectively have lower ranks
due to time inefficiency.

96

14. DISCUSSION

14 Discussion

From what we saw, (meta-)heuristics are cheap, efficient and scalable methods to solve
logistics problems. Even though, mainly metaheuristics which were inspired by natural
phenomena, have been targets of criticism among researchers. This is mainly due to the
fact that they try to disguise the missing aspect of innovation behind complex metaphors.
As for novel swarm optimizers, like the firefly algorithm proposed by (Yang, 2009) or
the bat algorithm proposed by Yang (2010) can be considered to merely be copies of the
well-established PSO or ACO and differ only in a nearly imperceptible way.

As could already be shown in previous sections, mainly metaheuristics represent highly
customizable algorithms and are thus not problem specific. Even though our results hint
a direction, one must not generalize the obtained results, as we set several limitations to
our setup for the simulation and empirical study, which will be elucidated in the following.

The comparative study suffers from the most diverse and different implementations. While
Google OR-Tools have been developed by experienced developers and researches such that
these methods will most probably be reviewed and updated frequently, the code proposed
by freelancing programmers via GitHub repository often lack on efficient implementations.
For this particular reason, the observed performance with main focus on the computational
efficiency of these algorithms is less favorable than their theoretical fundamentals would
advise to. However, if the lack of efficient implementation of these models is not fixed,
practitioners will be forced to spend additional resources in order to improve already
existent approaches. Nonetheless, algorithms which have already been implemented will
remain favorable.

For this particular reason, it becomes only more reasonable to compare the proposed
methods both, in a simulation study and on real world data, as it has been done in this
paper.

For the BnC’s performance disadvantage we note the vast and depending on the problem
itself growing amount of optimizations to be memorized in order to being solved. Mainly
on large problem instances, we note high computational effort in both calculation and
memorization. This is implied not to the solution finding itself, but more due to the fact
that this algorithm proves global optimality. Nonetheless, being the only exact method
we imposed, it delivered throughout every possible constellation the best results. Whilst
Bentley’s Greedy Algorithm works efficiently on the majority of the instances, it does
frequently not provide optimal solutions. Nonetheless, all kinds of greedy approaches are
simple in both coding and implementation. Before implementation, one must take into
account that the right approach has to be followed, often hard to be achieved within the
methods of Greedy Heuristics.

97

14. DISCUSSION

Depending on what kind of an initial state we obtain, the Local Search algorithm can easily
get stuck in local optima. This can also be caused by the little amount of knowledge we
have about the solution space. For this, its extension, the GLS was introduced. With this
method we overcome getting stuck in local optima, but one needs to define the features
first such that the true power of this algorithm can only be captured after a difficult
design.

In the setting of the SA, the crucial factor is laid upon the temperature and thus the
cooling schedule. For the design of the latter showing itself to be challenging, the algorithm
performs efficiently on rather small instances. On larger problems, it is not comparable
to other heuristics, lacking in efficiency and the ability to take notes on the quality of the
solution obtained, yet finding an optimal solution is statistically guaranteed.

While Tabu Search has an extra advantage in allowing us to select the maximum number
of elements of the tabu list, we face the trade-off between boosting efficiency or gaining
on the quality of the results. Furthermore, the more knowledge about the problem the
better the obtained results. Since our knowledge, mainly on the simulated data is rather
limited, results were poor in quality.

For the advantages of the ACO are vast, including positive feedback within the system
(responsible for a swift solution finding) or its efficiency on simpler problem instances (as
the TSP) and problems with dynamic applications (due to quick adaptation), we note
several drawbacks. ACO suffer mainly from the difficult theoretical analysis, for which
the vast amount of research is considered to be more an experimental analysis than a
theoretical, resulting from the fact that the artificial ants operate in a more or less ’black-
boxerish’ way. This being said, the probability distribution changes within the iterations.
Surplus, even though the sequences of decisions might be random, yet not independent.
All in all, the algorithm guarantees convergence, yet the time to achieve this is uncertain.

For the Gweeno algorithm delivered one of the best results, its drawback lie in the com-
putational effort that has to be invested. For simple instances, we were able to compute
results, yet for larger and more complex instances it failed thus resulting in overall low
ratings for the real-world dataset.

Learnheuristics have been shown not always to outperform standard metaheuristics. Their
strength lies in the their flexibility to learn task-specific heuristics for a wide range of
different practical problems for which no good heuristics exist so far. We have seen that
learnheuristics are computationally not feasible when trained using CPUs. The high
amount of matrix operations requires training using GPUs.

98

15. FUTURE CHALLENGES AND OPPORTUNITIES IN URBAN LOGISTICS

15 Future Challenges and Opportunities in Urban
Logistics

With the change in consumer behavior, the rise of new technologies and the persistent
globalization, the environment in which urban logistics operate are subject to continuous
change. While consumers opt for more and more to e-commerce, their awareness towards
environmental issues increase. In the same time, new (especially green) technologies
for transportation are developed. Future optimization algorithms should be able to be
changed such that they take into account these changes. As an example we could name
the rising trend of e-mobility vehicles which need to be charged from time to time, limiting
both its range and time of use.

Because of continuous growth in globalization and online commerce, consumer demands
have also been increasing. On the one hand, operations research thus has to deal with
new challenges such as same day delivery. On the other hand, mobile gadgets facilitate
new possibilities such as on-demand transportation currently only available for private
purposes with e.g. Uber or Lyft.

Leyerer et al. (2018) differentiate three areas of sustainability where the latter shall be
elaborated on more closely in the following:

• Economic sustainability,

• Social sustainability and

• Environmental sustainability.

Recent arising social and political awareness for environmental sustainability and new
developments in the area of green technologies necessitate that operations research does
not only address the direct costs for the company, but also takes into account noise
emissions, reputation damage, carbon tax or other costs resulting from environmental
pollution in form of incineration, packaging or exhaust gases. For example, the Euro-
pean Commission has defined the goal of forbidding conventionally powered vehicles by
2050 and achieving “CO2-free city logistics in major urban centers by 2030” (European
Commission. Directorate-General for Mobility and Transport, 2011). These goals will
probably require to prohibit certain types of vehicles. So even though the need for gen-
eral, versatile algorithms has arisen in the past decades on the one hand, we argue that
specific objective functions addressing environmental issues should be developed on the
other hand. Accordingly, we maintain that further advances in urban logistics should be
further researched in the framework of green information systems.

99

15. FUTURE CHALLENGES AND OPPORTUNITIES IN URBAN LOGISTICS

The Frauenhofer Institut is, for example, already researching in this area (Inninger, 2019).
They differentiate three options of electrification of urban logistics:

• Replacing Diesel motors with electric motors.

• Establishing an e-concept with cargobikes for instance.

• Creating a new logistics concept such as pull concepts, green logistics or night
logistics.

The options increase in risk and effort in the order listed.

New logistic concepts could extend the carsharing approach to the business sector. Car-
sharing is the offer of use of vehicles for trip-dependent fees to people who have the
necessary permits (Kuehne et al., 2017). This concept could, for example, reduce the
costs of empty trips. A suitable logistic concept has still to be developed to this case and
the optimization algorithms have to be adjusted to this much more complicated problem
setting.

What is more, arising industry 4.0 and the Internet of things provide future logistics
with new opportunities. Lee et al. (2016) incorporate vehicle location, vehicle condition
information and dynamic demand forecasting in their optimization algorithm of the vehicle
routing problem. For instance, mobile applications allow a company to track the GPS
positions of their ’salesmen’ in real time. Further, with live information on the traffic
situation, it is reasonable to require from future optimization algorithms to be dynamic
such that solutions can be online updated. Online optimization allows to take into account
traffic as well as update the customer base to be served such that new locations can be
pursued.

100

16. CONCLUSION

16 Conclusion

This thesis introduced the reader to the area of urban logistics. In the scope of this work,
we dealt with optimization solution approaches to solve corresponding logistical concepts.
We presented a general framework to classify a wide range of optimization algorithms
for urban logistics problems. We differentiated between exact methods, heuristics, meta-
heuristics and thus hybridizations of all the aforementioned instances, while focusing on
the (meta-) heuristic for their variability.

We especially stressed the importance of state-of-the-art machine learning methods. Learn-
heuristics where supervised machine learning methods are employed to (meta-)heuristics
for a specified problem, have shown to generalize well. To incorporate crucial methods
of Artificial Intelligence remains to be a fast developing, promising and steep progress in
the future.

In both a large-scale simulation study and an application to real-world-conditions, we
compared the performance of a chosen subset of relevant methods. From this we could
quantify both, advantages and disadvantages of the employed methods. All in all, we
provide decision support for parcel service providers, city authorities, and other relevant
businesses.

16.1 Results

As a result of our analysis we found out that when it comes to the quality of solutions,
nothing was able to compete with the exact methods, as theoretically explained. Among
the simple (meta-)heuristics, we could not identify a single best solution. Yet, being only
introduced recently to the field of combinatorial optimization, the Gnowee algorithm per-
formed best and came to close to the results obtained by exact methods. We recommend
to further investigate the field of hybrids then.

Further, it could be shown that learnheuristics do not improve the quality of solutions
provided by both, traditional (meta-)heuristics and hybrids. However, they can be applied
in a more general manner, being even less problem-specific than metaheuristics, but leave
a lot of scope for further research.

Since the exact optimization algorithms are not feasible (for the most simple instance we
had a total calculation time of over 30 minutes), we aim to find a balance between the
accuracy, the scalability and the computational time solver requires. In most cases, there
exists a trade off between the optimality of the solution and the time it takes to find it.
As Einstein once said,

“Everything should be made as simple as possible, but not simpler.”

101

16. CONCLUSION

Following this quotation, we recommend the use of metaheuristics instead of heuristics,
due to their wider range of application.

Further, the implementation of nature-inspired techniques in the field of computational
optimization shall be given less attention. Even though most of the explained and used
metaheuristics belong to this particular group, the amount of innovation in this setting
is minimal and so is the gained performance.

16.2 Outlook

There are several directions for future work that arise from the results of this paper.

(Meta-)Heuristic methods have been proposed in a time where computational power was
rare. In modern times where we have vast access to fast computing machines with suf-
ficient working memory, we can also make use of either more accurate methods. In
particular, we highlight the importance of cloud computing as evolving paradigm that
describes the ’ubiquitous, convenient, on-demand network access to a shared pool of con-
figurable computing resources’ (Mell et al., 2011). Even though its use still incurs costs,
computational more exhausting methods can be used. If the goal is to reduce these costs,
one might opt to use hybrid methods as the Gweeno. For its configuration is tedious,
once established it delivers results comparable or even equal to the results delivered by
exact methods in a fraction of time.

But not only the medium to solve routing problems has changed, but also the complexity
of the problems themselves. In recent time, there has been a surge of papers that analyze
dynamic logistics problems (Arnau et al., 2018). It is reasonable to assume that the cost a
path incurs depend on a state and cannot be prognosticated as a fixed number beforehand.
For example, we can think of the traveling time in a metropolis during rush hour. The
same street could take less than a tenth of the time in the night compared to the time it
would take to traverse it at 5 pm.

In an ever-changing economic environment, the requirements towards optimization meth-
ods of logistics problems are fast evolving. Accordingly, new application areas of routing
problems arise. For example, demand-side management in station-based car sharing con-
cepts make adjustments of generally applicable metaheuristics necessary (Broihan et al.,
2018). Especially, in urban areas green zones in city centers allow environmentally friendly
cars only to traverse them. Consequently, optimization algorithms should differentiate
between different types of salesmen. Another simulation study based on our results could
address especially the needs of newly evolved routing problems and propose task-specific
fitting.

All in all, urban logistics are expected to become even more important with the rise of

102

16. CONCLUSION

Industry 4.0. Optimization algorithms dealing with them should thus be advanced.

103

REFERENCES

References
Aarts, E. and Korst, J. (1988). Simulated annealing and Boltzmann machines.

Applegate, D. L., Bixby, R. E., Chvatal, V., and Cook, W. J. (2006). The traveling
salesman problem: a computational study. Princeton university press.

Arnau, Q., Juan, A., and Serra, I. (2018). On the use of learnheuristics in vehicle routing
optimization problems with dynamic inputs. Algorithms, 11(12):208.

Arora, T. and Gigras, Y. (2013). A survey of comparison between various metaheuristic
techniques for path planning problem. International Journal of Computer Engineering
& Science, 3(2):62–66.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., and Pro-
tasi, M. (2012). Complexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer Science & Business Media.

Aydin, M. E. (2012). Coordinating metaheuristic agents with swarm intelligence. Journal
of Intelligent Manufacturing, 23(4):991–999.

Baldacci, R., Hadjiconstantinou, E., and Mingozzi, A. (2004). An exact algorithm for the
capacitated vehicle routing problem based on a two-commodity network flow formula-
tion. Operations research, 52(5):723–738.

Bann, E. (2019). Ryanair joins the club of europe’s top 10 carbon pol-
luters. https://www.transportenvironment.org/press/ryanair-joins-club-
europe’s-top-10-carbon-polluters. (Accessed on August, 23rd 2019).

Bányai, T., Tamás, P., Illés, B., Stankevičiūtė, Ž., and Bányai, Á. (2019). Optimization
of municipal waste collection routing: Impact of industry 4.0 technologies on environ-
mental awareness and sustainability. International journal of environmental research
and public health, 16(4):634.

Battiti, R. and Brunato, M. (2010). Reactive search optimization: learning while opti-
mizing. In Handbook of Metaheuristics, pages 543–571. Springer.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940.

Bentley, J. L. (1980). A parallel algorithm for constructing minimum spanning trees.
Journal of algorithms, 1(1):51–59.

104

https://www.transportenvironment.org/press/ryanair-joins-club-europe’s-top-10-carbon-polluters
https://www.transportenvironment.org/press/ryanair-joins-club-europe’s-top-10-carbon-polluters

REFERENCES

Bevins, J. E. and Slaybaugh, R. (2019). Gnowee: a hybrid metaheuristic optimization
algorithm for constrained, black box, combinatorial mixed-integer design. Nuclear Tech-
nology, 205(4):542–562.

Bingham, C. B. and Eisenhardt, K. M. (2011). Rational heuristics: the ‘simple rules’ that
strategists learn from process experience. Strategic management journal, 32(13):1437–
1464.

Birattari, M. (2004). The problem of tuning metaheuristics as seen from a machine
learning perspective.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of
Life reviews, 2(4):353–373.

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A. (2011). Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM computing surveys (CSUR), 35(3):268–308.

Bozkaya, B., Erkut, E., and Laporte, G. (2003). A tabu search heuristic and adaptive
memory procedure for political districting. European Journal of Operational Research,
144(1):12–26.

Broihan, J., Möller, M., Kühne, K., Sonneberg, M., and Breitner, M. H. (2018). Revenue
Management meets Carsharing: Optimizing the Daily Business. In Operations Research
Proceedings 2016, pages 421–427. Springer.

Calvet, L., de Armas, J., Masip, D., and Juan, A. A. (2017). Learnheuristics: hybridizing
metaheuristics with machine learning for optimization with dynamic inputs. Open
Mathematics, 15(1):261–280.

Candelieri, A. (2011). A hyper-solution framework for classification problems via meta-
heuristic approaches. PhD thesis, Springer.

Carlson, J. A., Jaffe, A., and Wiles, A. (2006). The millennium prize problems. American
Mathematical Society Providence, RI.

Černỳ, V. (1985). Thermodynamical approach to the traveling salesman problem: An ef-
ficient simulation algorithm. Journal of optimization theory and applications, 45(1):41–
51.

Chandra, B., Karloff, H. J., and Tovey, C. A. (1994). New Results on the Old k-opt
Algorithm for the TSP. In SODA, pages 150–159.

105

REFERENCES

Chardaire, P. and Sutter, A. (1995). A decomposition method for quadratic zero-one
programming. Management Science, 41(4):704–712.

Chen, H., Perozzi, B., Hu, Y., and Skiena, S. (2018). Harp: Hierarchical representation
learning for networks. In Thirty-Second AAAI Conference on Artificial Intelligence.

Christofides, N. (1976). The vehicle routing problem. Revue française d’automatique,
informatique, recherche opérationnelle. Recherche opérationnelle, 10(V1):55–70.

Christofides, N. and Eilon, S. (1969). An algorithm for the vehicle-dispatching problem.
Journal of the Operational Research Society, 20(3):309–318.

Ciornei, I. and Kyriakides, E. (2011). Hybrid ant colony-genetic algorithm (GAAPI) for
global continuous optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 42(1):234–245.

Clarissa (2019). Dieselfahrzeuge: Warum ein Verbot in Deutschland beschlossen wurde.
https://www.bussgeldkatalog.org/dieselfahrzeuge-verbot/. (Accessed on Au-
gust, 30th 2019).

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations research, 12(4):568–581.

Clerc, M. (2004). Discrete particle swarm optimization, illustrated by the traveling sales-
man problem. In New optimization techniques in engineering, pages 219–239. Springer.

Colorni, A., Dorigo, M., Maniezzo, V., et al. (1992). Distributed optimization by ant
colonies. In Proceedings of the first European conference on artificial life, volume 142,
pages 134–142. Cambridge, MA.

Congram, R. K., Potts, C. N., and van de Velde, S. L. (2002). An iterated dynasearch al-
gorithm for the single-machine total weighted tardiness scheduling problem. INFORMS
Journal on Computing, 14(1):52–67.

Consoli, S. and Darby-Dowman, K. (2006). Combinatorial optimization and metaheuris-
tics. Technical report, Brunel University.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM.

Cook, W. (2016). Concorde TSP solver. http://www.math.uwaterloo.ca/tsp/
concorde.html.

Cooper, L. (1963). Location-allocation problems. Operations research, 11(3):331–343.

106

https://www.bussgeldkatalog.org/dieselfahrzeuge-verbot/
http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

REFERENCES

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., and Semet, F. (2002). A guide
to vehicle routing heuristics. Journal of the Operational Research society, 53(5):512–522.

Cowling, P., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach to schedul-
ing a sales summit. In International Conference on the Practice and Theory of Auto-
mated Timetabling, pages 176–190. Springer.

Crainic, T. G. and Toulouse, M. (2002). Introduction to the special issue on parallel
meta-heuristics. Journal of Heuristics, 8(3):247–249.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
research, 6(6):791–812.

Dantzig, G., Fulkerson, R., and Johnson, S. (1954). Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem. Management
science, 6(1):80–91.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection Or the
Preservation of Favoured Races in the Struggle for Life. H. Milford; Oxford University
Press.

Datta, S., Roy, S., and Davim, J. P. (2019). Optimization Techniques: An Overview. In
Optimization in Industry, pages 1–11. Springer.

Dethloff, J. (2001). Vehicle routing and reverse logistics: the vehicle routing problem with
simultaneous delivery and pick-up. OR-Spektrum, 23(1):79–96.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271.

Domschke, W., Scholl, A., et al. (2006). Heuristische Verfahren. Univ., Wirtschaftswiss.
Fak.

Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic.
In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), volume 2, pages 1470–1477. IEEE.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative learn-
ing approach to the traveling salesman problem. IEEE Transactions on evolutionary
computation, 1(1):53–66.

107

REFERENCES

Dréo, J., Pétrowski, A., Siarry, P., and Taillard, E. (2006). Metaheuristics for hard
optimization: methods and case studies. Springer Science & Business Media.

Duhr, S. and Braun, D. (2006). Thermophoretic depletion follows boltzmann distribution.
Physical review letters, 96(16):168301.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm theory.
In MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43. Ieee.

Edelkamp, S. and Schroedl, S. (2011). Heuristic search: theory and applications. Elsevier.

Eilon, S., Watson-Gandy, C. D. T., Christofides, N., and de Neufville, R. (1974). Distribu-
tion management-mathematical modelling and practical analysis. IEEE Transactions
on Systems, Man, and Cybernetics, (6):589–589.

Epitropakis, M. G. and Burke, E. K. (2018). Hyper-heuristics. Handbook of Heuristics,
pages 489–545.

Euler, L. (1741). Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, pages 128–140.

Euler, L. (1953). Leonhard Euler and the Königsberg bridges. Scientific American,
189(1):66–72.

European Commission (2013). A call to action on urban logistics.

European Commission. Directorate-General for Mobility and Transport (2011). White
Paper on Transport: Roadmap to a Single European Transport Area: Towards a Com-
petitive and Resource-efficient Transport System. Publications Office of the European
Union.

Fisher, M. L. and Rinnooy Kan, A. H. (1988). The design, analysis and implementation
of heuristics. Management Science, 34(3):263–265.

Floudas, C. A. and Pardalos, P. M. (2016). Encyclopedia of optimization.

Frauchiger, D. (2017). Anwendungen von Design Science Research in der Praxis. In
Wirtschaftsinformatik in Theorie und Praxis, pages 107–118. Springer.

Fredman, M. L. and Tarjan, R. E. (1987). Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM (JACM), 34(3):596–615.

108

REFERENCES

Fu, L., Sun, D., and Rilett, L. R. (2006). Heuristic shortest path algorithms for transporta-
tion applications: state of the art. Computers & Operations Research, 33(11):3324–
3343.

Gambardella, L. M. and Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to
the traveling salesman problem. In Machine Learning Proceedings 1995, pages 252–260.
Elsevier.

Garrido, P. and Castro, C. (2009). Stable solving of cvrps using hyperheuristics. In
Proceedings of the 11th Annual conference on Genetic and evolutionary computation,
pages 255–262. ACM.

Garrido, P. and Riff, M. C. (2010). DVRP: a hard dynamic combinatorial optimisation
problem tackled by an evolutionary hyper-heuristic. Journal of Heuristics, 16(6):795–
834.

Gebski, S. A., Czerwinski, P., Leyerer, M., Sonneberg, M.-O., and Breitner, M. H. (2018).
Ein Entscheidungsunterstützungssystem zur Tourenplanung am Beispiel eines innova-
tiven Lebensmittel-Lieferkonzeptes.

Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic for the vehicle
routing problem. Management science, 40(10):1276–1290.

Gendreau, M., Laporte, G., and Semet, F. (2001). A dynamic model and parallel tabu
search heuristic for real-time ambulance relocation. Parallel computing, 27(12):1641–
1653.

Gendreau, M. and Potvin, J.-Y. (2005). Metaheuristics in combinatorial optimization.
Annals of Operations Research, 140(1):189–213.

Gevaers, R., Van de Voorde, E., Vanelslander, T., et al. (2009). Characteristics of inno-
vations in last mile logistics-using best practices, case studies and making the link with
green and sustainable logistics. Association for European Transport and contributors.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers & operations research, 13(5):533–549.

Golden, B. L., Raghavan, S., and Wasil, E. A. (2008). The vehicle routing problem: latest
advances and new challenges, volume 43. Springer Science & Business Media.

Google (2019). OR-Tools. https://opensource.google.com/projects/or-tools.

Goss, S., Aron, S., Deneubourg, J.-L., and Pasteels, J. M. (1989). Self-organized shortcuts
in the argentine ant. Naturwissenschaften, 76(12):579–581.

109

https://opensource.google.com/projects/or-tools

REFERENCES

Gregor, S. and Hevner, A. R. (2013). Positioning and presenting design science research
for maximum impact. MIS quarterly, pages 337–355.

Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhoffer,
K. J., Pataki, D. E., and Peters, D. P. (2008). The changing landscape: ecosystem
responses to urbanization and pollution across climatic and societal gradients. Frontiers
in Ecology and the Environment, 6(5):264–272.

Grus, J. (2019). Data science from scratch: first principles with python. O’Reilly Media.

Hansen, P. and Mladenović, N. (2003). Variable neighborhood search. In Handbook of
metaheuristics, pages 145–184. Springer.

Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005). The elements of statis-
tical learning: data mining, inference and prediction. The Mathematical Intelligencer,
27(2):83–85.

Haykin, S. (1994). Neural networks: a comprehensive foundation. Prentice Hall PTR.

Hazewinkel, M. (2001). Fermat-Torricelli problem, Encyclopedia of Mathematics.

Hazlitt, H. (2010). Economics in one lesson: The shortest and surest way to understand
basic economics. Currency.

Henderson, D., Jacobson, S. H., and Johnson, A. W. (2003). The theory and practice of
simulated annealing. In Handbook of metaheuristics, pages 287–319. Springer.

Hendrickson, B. and Leland, R. W. (1995). A Multi-Level Algorithm For Partitioning
Graphs. SC, 95(28):1–14.

Hevner, A. and Chatterjee, S. (2010). Design science research in information systems. In
Design research in information systems, pages 9–22. Springer.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation,
9(8):1735–1780.

Hogg, T. and Williams, C. P. (1993). Solving the really hard problems with cooperative
search. In Proceedings of the national conference on artificial intelligence, pages 231–
231. JOHN WILEY & SONS LTD.

Holland, J. H. et al. (1992). Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence.

110

REFERENCES

Ingber, L. (2000). Adaptive simulated annealing (ASA): Lessons learned. arXiv preprint
cs/0001018.

Inninger, W. (2019). Urbane Logistik in der Zukunft. https://www.it-logistik-
bayern.de/uploads/media/Vortrag_Wolfgang_Inninger_Fraunhofer_IML.pdf.

Jeong, S.-J., Kim, K.-S., and Lee, Y.-H. (2009). The efficient search method of simulated
annealing using fuzzy logic controller. Expert Systems with Applications, 36(3):7099–
7103.

Johnson, D. S. and Garey, M. R. (1979). Computers and intractability: A guide to the
theory of NP-completeness. WH Freeman.

Johnson, D. S. and McGeoch, L. A. (1997). The traveling salesman problem: A case
study in local optimization. Local search in combinatorial optimization, 1(1):215–310.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285.

Kalnay, E. and Cai, M. (2003). Impact of urbanization and land-use change on climate.
Nature, 423(6939):528.

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization.
Technical report, Technical report-tr06, Erciyes university, engineering faculty, com-
puter ….

Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (abc) algorithm. Journal of global optimiza-
tion, 39(3):459–471.

Kennedy, K. (2001). Fast greedy weighted fusion. International Journal of Parallel
Programming, 29(5):463–491.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. science, 220(4598):671–680.

Kong, X., Liu, S., Wang, Z., and Yong, L. (2012). Hybrid artificial bee colony algorithm
for global numerical optimization. Journal of Computational Information Systems,
8(6):2367–2374.

Kool, W., van Hoof, H., and Welling, M. (2018). Attention, learn to solve routing prob-
lems! arXiv preprint arXiv:1803.08475.

111

https://www.it-logistik-bayern.de/uploads/media/Vortrag_Wolfgang_Inninger_Fraunhofer_IML.pdf
https://www.it-logistik-bayern.de/uploads/media/Vortrag_Wolfgang_Inninger_Fraunhofer_IML.pdf

REFERENCES

Kotsiantis, S. B., Zaharakis, I., and Pintelas, P. (2007). Supervised machine learning:
A review of classification techniques. Emerging artificial intelligence applications in
computer engineering, 160:3–24.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50.

Kuehne, K., Sonneberg, M.-O., and Breitner, M. (2017). Ecological & profitable carshar-
ing business: Emission limits & heterogeneous fleets.

Laporte, G. (1987). Location-routing problems.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate
algorithms. European journal of operational research, 59(3):345–358.

Laporte, G. and Semet, F. (2002). Classical heuristics for the capacitated vrp. In The
vehicle routing problem, pages 109–128. SIAM.

Lawler, E. L. and Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations
research, 14(4):699–719.

Lee, K., Kim, D.-h., Choi, H. R., Park, B. K., Cho, M. J., Kang, D. Y., Park, S. H., and
Sung, S. H. (2016). A study on vehicle routing problems considering iot based real time
information. Advanced Science and Technology Letters, 140.

Lenstra, J. K. and Kan, A. R. (1981). Complexity of vehicle routing and scheduling
problems. Networks, 11(2):221–227.

Leyerer, M., Sonneberg, M.-O., and Breitner, M. H. (2018). Decision Support for Urban
E-Grocery Operations.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System
Technical Journal, 44(10):2245–2269.

Lin, S. and Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516.

Lin, T. Y. et al. (1998). Granular computing on binary relations i: Data mining and
neighborhood systems. Rough sets in knowledge discovery, 1:107–121.

Little, J. D., Murty, K. G., Sweeney, D. W., and Karel, C. (1963). An algorithm for the
traveling salesman problem. Operations research, 11(6):972–989.

112

REFERENCES

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In Handbook
of metaheuristics, pages 320–353. Springer.

Lozano, M. and García-Martínez, C. (2010). Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: Overview and progress
report. Computers & Operations Research, 37(3):481–497.

Lundy, M. and Mees, A. (1986). Convergence of an annealing algorithm. Mathematical
programming, 34(1):111–124.

Maier, H. R., Razavi, S., Kapelan, Z., Matott, L. S., Kasprzyk, J., and Tolson, B. A.
(2018). Introductory overview: Optimization using evolutionary algorithms and other
metaheuristics. Environmental modelling & software.

Maniezzo, V., Stützle, T., and Voß, S. (2009). Hybridizing metaheuristics and mathemat-
ical programming. series: Annals of information systems.

Meixell, M. J. and Luoma, P. (2015). Stakeholder pressure in sustainable supply chain
management: a systematic review. International Journal of Physical Distribution &
Logistics Management, 45(1/2):69–89.

Mell, P., Grance, T., et al. (2011). The NIST definition of cloud computing.

Mills, P. and Tsang, E. (2000). Guided local search for solving sat and weighted MAX-SAT
problems. Journal of Automated Reasoning, 24(1-2):205–223.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &
operations research, 24(11):1097–1100.

Montemanni, R., Gambardella, L. M., Rizzoli, A. E., and Donati, A. V. (2005). Ant colony
system for a dynamic vehicle routing problem. Journal of Combinatorial Optimization,
10(4):327–343.

Mulligan, G. F. (2006). Logistic population growth in the world’s largest cities. Geo-
graphical analysis, 38(4):344–370.

Nazari, M., Oroojlooy, A., Snyder, L., and Takác, M. (2018). Reinforcement learning
for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pages 9839–9849.

Neumann, F. and Witt, C. (2010). Combinatorial optimization and computational
complexity. In Bioinspired Computation in Combinatorial Optimization, pages 9–19.
Springer.

113

REFERENCES

Osman, I. H. and Kelly, J. P. (1996). Meta-heuristics: an overview. In Meta-heuristics,
pages 1–21. Springer.

Padberg, M. and Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM review, 33(1):60–100.

Paket und Expresslogistik e. V., B. (2019). Kep-studie 2019. https://www.biek.de/
publikationen/studien.html. (Accessed on August, 22nd 2019).

Papadimitriou, C. H. (2003). Computational complexity. John Wiley and Sons Ltd.

Parsopoulos, K. E. and Vrahatis, M. N. (2002). Particle swarm optimization method
in multiobjective problems. In Proceedings of the 2002 ACM symposium on Applied
computing, pages 603–607. ACM.

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving.

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design
science research methodology for information systems research. Journal of management
information systems, 24(3):45–77.

Pegg Jr, E. (2009). The icosian game, revisited. The Mathematica Journal, 11(3):310–314.

Pichpibul, T. and Kawtummachai, R. (2012). An improved clarke and wright savings
algorithm for the capacitated vehicle routing problem. ScienceAsia, 38(3):307–318.

Plowman, E. G. (1962). Elements of business logistics. Graduate School of Business,
Stanford University.

Puchinger, J. and Raidl, G. R. (2005). Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In International Work-
Conference on the Interplay Between Natural and Artificial Computation, pages 41–53.
Springer.

Punakivi, M., Yrjölä, H., and Holmström, J. (2001). Solving the last mile issue: recep-
tion box or delivery box? International Journal of Physical Distribution & Logistics
Management, 31(6):427–439.

Raidl, G. R. (2006). A unified view on hybrid metaheuristics. In International Workshop
on Hybrid Metaheuristics, pages 1–12. Springer.

Reiche, M. (2019). Mit dem ”Polensprinter” an der Maut vorbei. https://www.
tagesschau.de/inland/speditionen-umgehen-maut-101.html.

114

https://www.biek.de/publikationen/studien.html
https://www.biek.de/publikationen/studien.html
https://www.tagesschau.de/inland/speditionen-umgehen-maut-101.html
https://www.tagesschau.de/inland/speditionen-umgehen-maut-101.html

REFERENCES

Roberto, B., Maria, B., and Daniele, V. (2007). Routing a heterogeneous fleet of vehicles.
DEIS, University Bologna via Venezia, 52:47023.

Rochat, Y. and Taillard, É. D. (1995). Probabilistic diversification and intensification in
local search for vehicle routing. Journal of heuristics, 1(1):147–167.

Rosenkrantz, D. J., Stearns, R. E., and Lewis, II, P. M. (1977). An analysis of several
heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563–
581.

Rothlauf, F. (2011). Design of modern heuristics: principles and application. Springer
Science & Business Media.

Russell, R. and Igo, W. (1979). An assignment routing problem. Networks, 9(1):1–17.

Sachan, A. and Datta, S. (2005). Review of supply chain management and logistics
research. International Journal of Physical Distribution & Logistics Management,
35(9):664–705.

San Nah Sze, W. K. T. (2007). A comparison between heuristic and meta-heuristic
methods for solving the multiple traveling salesman problem.

Settles, M. and Soule, T. (2005). Breeding swarms: a GA/PSO hybrid. In Proceedings
of the 7th annual conference on Genetic and evolutionary computation, pages 161–168.
ACM.

Sevaux, M., Sörensen, K., and Pillay, N. (2018). Adaptive and multilevel metaheuristics.
Handbook of Heuristics, pages 1–19.

Shelokar, P., Siarry, P., Jayaraman, V. K., and Kulkarni, B. D. (2007). Particle swarm
and ant colony algorithms hybridized for improved continuous optimization. Applied
mathematics and computation, 188(1):129–142.

Shmoys, D. B. and Aardal, K. (1997). Approximation algorithms for facility location
problems, volume 1997. Utrecht University: Information and Computing Sciences.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research, 35(2):254–265.

Song, L., Cherrett, T., McLeod, F., and Guan, W. (2009). Addressing the last mile
problem: transport impacts of collection and delivery points. Transportation Research
Record, 2097(1):9–18.

115

REFERENCES

Sörensen, K., Sevaux, M., and Glover, F. (2018). A history of metaheuristics. Handbook
of heuristics, pages 1–18.

Stein, G., Chen, B., Wu, A. S., and Hua, K. A. (2005). Decision tree classifier for network
intrusion detection with ga-based feature selection. In Proceedings of the 43rd annual
Southeast regional conference-Volume 2, pages 136–141. ACM.

Streim, H. (1975). Heuristische Lösungsverfahren Versuch einer Begriffsklärung.
Zeitschrift für Operations Research, 19(5):143–162.

Stützle, T. and Hoos, H. H. (2000). MAX–MIN ant system. Future generation computer
systems, 16(8):889–914.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, volume 74. John
Wiley & Sons.

Taniguchi, E. and Van Der Heijden, R. E. (2000). An evaluation methodology for city
logistics. Transport Reviews, 20(1):65–90.

Thorngate, W. (1980). Efficient decision heuristics. Behavioral Science, 25(3):219–225.

Tien, J.-P. and Li, T. (2013). Hybrid taguchi-chaos of artificial bee colony algorithm for
global numerical optimization. Int. J. Innovative Comput. Inf. Control, 9(6):2665–2688.

Ting, T., Wong, K., and Chung, C. (2005). Investigation of hybrid genetic algorithm/-
particle swarm optimization approach for the power flow problem. In Proceedings of
2005 International Conference on Machine Learning and Cybernetics, volume 1, pages
436–440.

Ting, T., Wong, K., and Chung, C. (2006). A hybrid genetic algorithm/particle swarm
approach for evaluation of power flow in electric network. In Advances in Machine
Learning and Cybernetics, pages 908–917. Springer.

Toth, P. and Vigo, D. (2002). The vehicle routing problem. SIAM.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-
routing problem. Informs Journal on computing, 15(4):333–346.

Turner, A. J. and Miller, J. F. (2014). Neuroevolution: evolving heterogeneous artificial
neural networks. Evolutionary Intelligence, 7(3):135–154.

UNFCCC (2018). The Paris Agreement. https://unfccc.int/process-and-meetings/
the-paris-agreement/the-paris-agreement. (Accessed on August, 30th 2019).

116

https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

REFERENCES

Van Aken, J. E. (2005). Management research as a design science: Articulating the
research products of mode 2 knowledge production in management. British journal of
management, 16(1):19–36.

Van Audenhove, F.-J., De Jongh, S., and Durance, M. (2015). Urban logistics. https:
//www.adlittle.com/en/UrbanLogistics. (Accessed on August, 22nd 2019).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer networks. In Advances in
Neural Information Processing Systems, pages 2692–2700.

Voudouris, C. and Tsang, E. (1999). Guided local search and its application to the
traveling salesman problem. European journal of operational research, 113(2):469–499.

Walshaw, C. (2000). A multilevel algorithm for force-directed graph drawing. In Inter-
national Symposium on Graph Drawing, pages 171–182. Springer.

Walshaw, C. (2002). A multilevel approach to the travelling salesman problem. Operations
research, 50(5):862–877.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

Webster, J. and Watson, R. T. (2002). Analyzing the past to prepare for the future:
Writing a literature review. MIS quarterly, pages xiii–xxiii.

West, D. B. et al. (1996). Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, NJ.

Wolpert, D. H., Macready, W. G., et al. (1997). No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67–82.

Worldbank (2019). Database. https://data.worldbank.org/indicator. (Accessed on
August, 10th 2019).

Xu, J. and Kelly, J. P. (1996). A network flow-based tabu search heuristic for the vehicle
routing problem. Transportation Science, 30(4):379–393.

Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In International
symposium on stochastic algorithms, pages 169–178. Springer.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. In Nature inspired
cooperative strategies for optimization (NICSO 2010), pages 65–74. Springer.

117

https://www.adlittle.com/en/UrbanLogistics
https://www.adlittle.com/en/UrbanLogistics
https://data.worldbank.org/indicator

A. APPENDIX

A Appendix

Symbol Definition
I Indicator function, equal to 1 for a pre-

defined condition and 0 otherwise
cx Transportation Costs
Cx Capacity of x
dx Demand of x
f(x) Objective function
Ix Facility information (o - to be opened; c -

to be closed)
i and j Nodes i and j
k Amount of agents/particles/salesmen
Lk Length of tour k
n Input size
ox Costs for facility building
Ω Set of constraints
S Solution
s ∈ S Single solution from the Solution space
smax Global optimum
s∗ Incubent solution
s[] Empty solution
trx,y Distribution costs
vx Edges

Table 11: Notations

118

A. APPENDIX

M
et

ho
do

lo
gy

Li
te

ra
tu

re
R

es
ea

rc
h

D
es

ig
n

W
eb

st
er

an
d

W
at

so
n

(2
00

2)
,V

an
A

ke
n

(2
00

5)
,P

eff
er

se
ta

l.
(2

00
7)

H
ev

ne
ra

nd
C

ha
tt

er
je

e
(2

01
0)

,,
G

re
go

ra
nd

H
ev

ne
r

(2
01

3)
,F

ra
uc

hi
ge

r
(2

01
7)

C
om

bi
na

to
ria

lO
pt

im
iz

at
io

n
Pr

ob
le

m
C

oo
k

(1
97

1)
,D

et
hl

off
(2

00
1)

,P
ap

ad
im

itr
io

u
(2

00
3)

,(
G

en
dr

ea
u

an
d

Po
tv

in
,2

00
5)

,C
ar

lso
n

et
al

.(
20

06
),

C
on

so
li

an
d

D
ar

by
-D

ow
m

an
(2

00
6)

,N
eu

m
an

n
an

d
W

itt
(2

01
0)

,A
us

ie
llo

et
al

.(
20

12
),

(F
lo

ud
as

an
d

Pa
rd

al
os

,2
01

6)
In

tr
od

uc
tio

n
to

Lo
gi

st
ic

Pr
ob

le
m

Eu
ro

pe
an

C
om

m
iss

io
n

(2
01

3)
,M

ul
lig

an
(2

00
6)

,G
eb

sk
ie

ta
l.

(2
01

8)
,V

an
A

ud
en

ho
ve

et
al

.(
20

15
),

Pa
ke

tu
nd

Ex
pr

es
s-

lo
gi

st
ik

e.
V

.(
20

19
),

Bá
ny

ai
et

al
.(

20
19

),
G

eb
sk

ie
t

al
.(

20
18

),
K

al
na

y
an

d
C

ai
(2

00
3)

,G
rim

m
et

al
.(

20
08

),
Ba

nn
(2

01
9)

,M
ei

xe
ll

an
d

Lu
om

a
(2

01
5)

,W
or

ld
ba

nk
(2

01
9)

,T
an

ig
uc

hi
an

d
Va

n
D

er
H

ei
jd

en
(2

00
0)

,C
la

ris
sa

(2
01

9)
,S

ac
ha

n
an

d
D

at
ta

(2
00

5)
,P

un
ak

iv
ie

t
al

.(
20

01
),

So
ng

et
al

.(
20

09
),

H
az

ew
in

ke
l(

20
01

),
Eu

le
r

(1
74

1)
,P

eg
g

Jr
(2

00
9)

,E
ul

er
(1

95
3)

,
Pe

gg
Jr

(2
00

9)
,

K
ru

sk
al

(1
95

6)
,

Jo
hn

so
n

an
d

G
ar

ey
(1

97
9)

,
D

an
tz

ig
an

d
R

am
se

r
(1

95
9)

,
Le

ns
tr

a
an

d
K

an
(1

98
1)

,R
ob

er
to

et
al

.(
20

07
),

So
lo

m
on

(1
98

7)
,R

us
se

ll
an

d
Ig

o
(1

97
9)

,S
hm

oy
sa

nd
A

ar
da

l(
19

97
),

N
eu

m
an

n
an

d
W

itt
(2

01
0)

,D
ijk

st
ra

(1
95

9)
,F

re
dm

an
an

d
Ta

rja
n

(1
98

7)
,F

lo
ud

as
an

d
Pa

rd
al

os
(2

01
6)

,C
oo

pe
r

(1
96

3)
.

La
po

rt
e

(1
98

7)
,

Fu
et

al
.(

20
06

),
D

et
hl

off
(2

00
1)

,C
hr

ist
ofi

de
s

(1
97

6)
,J

oh
ns

on
an

d
M

cG
eo

ch
(1

99
7)

Ex
ac

t
M

et
ho

ds
Fl

ou
da

s
an

d
Pa

rd
al

os
(2

01
6)

,C
hr

ist
ofi

de
s

an
d

Ei
lo

n
(1

96
9)

,P
ad

be
rg

an
d

R
in

al
di

(1
99

1)
,R

ot
hl

au
f(

20
11

),
Ba

ld
ac

ci
et

al
.(

20
04

),
D

an
tz

ig
et

al
.(

19
54

),
C

hr
ist

ofi
de

sa
nd

Ei
lo

n
(1

96
9)

,L
itt

le
et

al
.(

19
63

),
K

ru
sk

al
(1

95
6)

,A
pp

le
ga

te
et

al
.

(2
00

6)
,

To
th

an
d

V
ig

o
(2

00
2)

,
D

om
sc

hk
e

et
al

.(
20

06
),

St
re

im
(1

97
5)

,
T

ho
rn

ga
te

(1
98

0)
,

Pe
ar

l(
19

84
),

La
w

le
r

an
d

W
oo

d
(1

96
6)

,P
uc

hi
ng

er
an

d
R

ai
dl

(2
00

5)
H

eu
ris

tic
s

Bi
ng

ha
m

an
d

Ei
se

nh
ar

dt
(2

01
1)

,
Pe

ar
l

(1
98

4)
,

D
om

sc
hk

e
et

al
.

(2
00

6)
,

Pe
ar

l
(1

98
4)

,
K

en
ne

dy
(2

00
1)

,
Fi

sh
er

an
d

R
in

no
oy

K
an

(1
98

8)
,T

ot
h

an
d

V
ig

o
(2

00
2)

,C
or

de
au

et
al

.(
20

02
),

G
en

dr
ea

u
et

al
.(

20
01

),
C

la
rk

e
an

d
W

rig
ht

(1
96

4)
,

Be
nt

le
y

(1
98

0)
,R

os
en

kr
an

tz
et

al
.(

19
77

),
W

al
sh

aw
(2

00
2)

,H
en

dr
ick

so
n

an
d

Le
la

nd
(1

99
5)

,W
al

sh
aw

(2
00

0)
,C

he
n

et
al

.(
20

18
),

C
la

rk
e

an
d

W
rig

ht
(1

96
4)

,L
in

an
d

K
er

ni
gh

an
(1

97
3)

,L
in

(1
96

5)
,C

ha
nd

ra
et

al
.(

19
94

),
Jo

hn
so

n
an

d
M

cG
eo

ch
(1

99
7)

,S
tr

ei
m

(1
97

5)
,K

en
ne

dy
(2

00
1)

,L
in

et
al

.(
19

98
),

La
po

rt
e

an
d

Se
m

et
(2

00
2)

,C
ro

es
(1

95
8)

,S
ör

en
se

n
et

al
.(

20
18

),
Pi

ch
pi

bu
la

nd
K

aw
tu

m
m

ac
ha

i(
20

12
)

C
la

ss
ifi

ca
tio

n
Sc

he
m

e
M

la
de

no
vi

ć
an

d
H

an
se

n
(1

99
7)

,G
en

dr
ea

u
an

d
Po

tv
in

(2
00

5)
,A

ro
ra

an
d

G
ig

ra
s

(2
01

3)
M

et
ah

eu
ris

tic
s

Ta
lb

i
(2

00
9)

,
G

en
dr

ea
u

an
d

Po
tv

in
(2

00
5)

,
Pu

ch
in

ge
r

an
d

R
ai

dl
(2

00
5)

,
W

ol
pe

rt
et

al
.

(1
99

7)
,

O
sm

an
an

d
K

el
ly

(1
99

6)
,

Li
n

et
al

.
(1

99
8)

,
O

sm
an

an
d

K
el

ly
(1

99
6)

,
G

lo
ve

r
(1

98
6)

,
Ed

el
ka

m
p

an
d

Sc
hr

oe
dl

(2
01

1)
,

To
th

an
d

V
ig

o
(2

00
3)

,R
oc

ha
t

an
d

Ta
ill

ar
d

(1
99

5)
,X

u
an

d
K

el
ly

(1
99

6)
,K

irk
pa

tr
ick

et
al

.(
19

83
),

Č
er

nỳ
(1

98
5)

,A
ar

ts
an

d
K

or
st

(1
98

8)
,E

be
rh

ar
ta

nd
K

en
ne

dy
(1

99
5)

,C
le

rc
(2

00
4)

,D
or

ig
o

an
d

D
iC

ar
o

(1
99

9)
,G

os
s

et
al

.(
19

89
),

K
ar

ab
og

a
(2

00
5)

,
K

ar
ab

og
a

an
d

Ba
st

ur
k

(2
00

7)
,

D
at

ta
et

al
.

(2
01

9)
,

H
ol

la
nd

et
al

.
(1

99
2)

,
Bl

um
an

d
R

ol
i

(2
00

3)
,

Sö
re

ns
en

et
al

.
(2

01
8)

,G
en

dr
ea

u
an

d
Po

tv
in

(2
00

5)
,S

ev
au

x
et

al
.(

20
18

),
Sa

n
N

ah
Sz

e
(2

00
7)

,C
on

so
li

an
d

D
ar

by
-D

ow
m

an
(2

00
6)

,
Vo

ud
ou

ris
an

d
Ts

an
g

(1
99

9)
,L

ou
re

nç
o

et
al

.(
20

03
),

Se
tt

le
s

an
d

So
ul

e
(2

00
5)

,M
ai

er
et

al
.(

20
18

),
A

ro
ra

an
d

G
ig

ra
s

(2
01

3)
,H

en
de

rs
on

et
al

.(
20

03
),

Jo
hn

so
n

an
d

M
cG

eo
ch

(1
99

7)
,T

ot
h

an
d

V
ig

o
(2

00
3)

,B
oz

ka
ya

et
al

.(
20

03
),

G
en

dr
ea

u
et

al
.(

19
94

),
G

en
dr

ea
u

et
al

.(
20

01
),

A
ar

ts
an

d
K

or
st

(1
98

8)
,H

en
de

rs
on

et
al

.(
20

03
),

Sö
re

ns
en

et
al

.(
20

18
),

Ay
di

n
(2

01
2)

,G
ol

de
n

et
al

.(
20

08
),

To
th

an
d

V
ig

o
(2

00
2)

,S
et

tle
sa

nd
So

ul
e(

20
05

),
Bl

um
(2

00
5)

,C
ol

or
ni

et
al

.(
19

92
),

St
üt

zl
e

an
d

H
oo

s
(2

00
0)

,D
or

ig
o

an
d

G
am

ba
rd

el
la

(1
99

7)
,D

ré
o

et
al

.(
20

06
),

Pa
rs

op
ou

lo
s

an
d

Vr
ah

at
is

(2
00

2)
,M

on
te

m
an

ni
et

al
.(

20
05

),
Lu

nd
y

an
d

M
ee

s
(1

98
6)

,I
ng

be
r

(2
00

0)
,C

ha
rd

ai
re

an
d

Su
tt

er
(1

99
5)

,H
an

se
n

an
d

M
la

de
no

vi
ć

(2
00

3)
H

yb
rid

s
Bl

um
et

al
.(

20
11

),
A

ro
ra

an
d

G
ig

ra
s

(2
01

3)
,

H
og

g
an

d
W

ill
ia

m
s

(1
99

3)
,

T
in

g
et

al
.(

20
05

),
C

ra
in

ic
an

d
To

ul
ou

se
(2

00
2)

,B
lu

m
et

al
.(

20
11

),
T

in
g

et
al

.(
20

05
),

Sh
el

ok
ar

et
al

.(
20

07
),

Lo
za

no
an

d
G

ar
cí

a-
M

ar
tín

ez
(2

01
0)

,R
ai

dl
(2

00
6)

,
Be

vi
ns

an
d

Sl
ay

ba
ug

h
(2

01
9)

St
at

ist
ic

al
Le

ar
ni

ng
M

et
ho

ds
H

as
tie

et
al

.(
20

05
),

K
ot

sia
nt

is
et

al
.(

20
07

),
(A

rn
au

et
al

.,
20

18
),

K
ae

lb
lin

g
et

al
.(

19
96

),
M

an
ie

zz
o

et
al

.(
20

09
),

C
on

gr
am

et
al

.(
20

02
),

Bl
um

(2
00

5)
Le

ar
nh

eu
ris

tic
s

C
al

ve
t

et
al

.(
20

17
),

C
ow

lin
g

et
al

.(
20

00
),

G
ar

rid
o

an
d

C
as

tr
o

(2
00

9)
,

G
ar

rid
o

an
d

R
iff

(2
01

0)
,

G
am

ba
rd

el
la

an
d

D
or

ig
o

(1
99

5)
,W

at
ki

ns
an

d
D

ay
an

(1
99

2)
,B

ira
tt

ar
i(

20
04

),
Je

on
g

et
al

.(
20

09
).

Ba
tt

iti
an

d
Br

un
at

o
(2

01
0)

,S
te

in
et

al
.(

20
05

),
C

an
de

lie
ri

(2
01

1)
,T

ur
ne

r
an

d
M

ill
er

(2
01

4)
,E

pi
tr

op
ak

is
an

d
Bu

rk
e

(2
01

8)
,H

ay
ki

n
(1

99
4)

,H
oc

hr
ei

te
r

an
d

Sc
hm

id
hu

be
r

(1
99

7)
,V

as
wa

ni
et

al
.(

20
17

),
V

in
ya

ls
et

al
.(

20
15

),
Be

llo
et

al
.(

20
16

),
K

oo
le

t
al

.(
20

18
)

Ta
bl

e
12

:
Li

te
ra

tu
re

ca
te

go
riz

at
io

n

119

A. APPENDIX

M
et

ho
ds

Ex
pl

or
at

io
n

Ex
pl

oi
ta

tio
n

Li
te

ra
tu

re

C
on

st
ru

ct
iv

e
H

eu
ris

tic
s

Be
nt

le
y’

s
G

re
ed

y
A

lg
or

ith
m

s
Ex

pl
or

at
io

n
is

lim
ite

d,
as

on
ly

ne
ig

hb
or

s
ar

e
co

m
-

pa
re

d.
T

hu
s

we
ca

n
sa

y,
it

to
be

ex
pl

or
at

io
n-

fre
e

T
he

ex
pl

oi
ta

tio
n

is
sim

pl
e,

as
th

e
lo

we
st

ed
ge

we
ig

ht
is

im
pl

em
en

te
d

in
to

th
e

so
lu

-
tio

n

Be
nt

le
y

(1
98

0)

N
ea

re
st

N
ei

gh
bo

ur
M

et
ho

ds
Li

m
ite

d,
sin

ce
we

st
ay

in
th

e
ne

ig
hb

or
ho

od
on

ly
T

he
ex

pl
oi

ta
tio

n
is

sim
pl

e,
as

th
e

lo
we

st
ed

ge
we

ig
ht

is
im

pl
em

en
te

d
in

to
th

e
so

lu
-

tio
n

R
os

en
kr

an
tz

et
al

.
(1

97
7)

,
M

la
de

no
vi

ć
an

d
H

an
se

n
(1

99
7)

,L
in

et
al

.(
19

98
)

Im
pr

ov
em

en
t

H
eu

ris
tic

s
M

ul
ti-

Le
ve

l-A
pp

ro
ac

h
Id

en
tifi

ca
tio

n
of

th
e

gr
ap

hs
ne

ed
ed

in
or

de
r

to
ob

ta
in

a
so

lu
tio

n

R
ed

uc
in

g
gr

ap
hs

in
to

su
b-

gr
ap

hs
W

al
sh

aw
(2

00
2)

,
H

en
dr

ick
-

so
n

an
d

Le
la

nd
(1

99
5)

,W
al

-
sh

aw
(2

00
0)

,
C

he
n

et
al

.
(2

01
8)

C
la

rk
e

an
d

W
rig

ht
’s

Sa
vi

ng
s

A
lg

or
ith

m
A

ll
no

de
s

fro
m

th
e

so
lu

tio
n

sp
ac

ea
re

ta
ke

n
in

to
ac

co
un

t
an

d
th

er
ef

or
e

co
m

bi
ne

d
in

to
to

ur
s

A
na

ly
zi

ng
w

hi
ch

th
e

gr
ea

t-
es

t
sa

vi
ng

s
ac

hi
ev

ed
by

m
er

gi
ng

se
pa

ra
te

to
ur

s

C
la

rk
e

an
d

W
rig

ht
(1

96
4)

,
La

po
rt

e
an

d
Se

m
et

(2
00

2)
,

Pi
ch

pi
bu

l
an

d
K

aw
tu

m
-

m
ac

ha
i(

20
12

)
Li

n
K

er
ni

ng
ha

m
D

iv
id

e
so

lu
tio

n
sp

ac
e

in
to

su
bs

et
s

R
ep

la
ci

ng
ed

ge
s

of
th

e
su

b-
se

t
un

de
r

ex
am

in
at

io
n

Li
n

an
d

K
er

ni
gh

an
(1

97
3)

,
Li

n
(1

96
5)

,
C

ha
nd

ra
et

al
.

(1
99

4)
,

Jo
hn

so
n

an
d

M
c-

G
eo

ch
(1

99
7)

,
W

al
sh

aw
(2

00
2)

Ta
bl

e
13

:
C

om
pa

ris
on

be
tw

ee
n

ex
pl

oi
ta

tio
n

an
d

ex
pl

or
at

io
n

of
th

e
so

lu
tio

n
sp

ac
e

be
tw

ee
n

H
eu

ris
tic

s

120

A. APPENDIX
M

et
ho

ds
Ex

pl
or

at
io

n
Ex

pl
oi

ta
tio

n
Li

te
ra

tu
re

In
di

vi
du

al
-b

as
ed

Lo
ca

lS
ea

rc
h

M
et

ho
ds

R
an

do
m

se
le

ct
io

n
of

in
iti

al
so

lu
-

tio
ns

It
er

at
iv

el
y

m
od

ify
in

g
th

e
in

-
cu

be
nt

so
lu

tio
ns

s∗
O

sm
an

an
d

K
el

ly
(1

99
6)

,
,

Lo
ur

en
ço

et
al

.
(2

00
3)

,
R

oc
ha

t
an

d
Ta

ill
ar

d
(1

99
5)

,
Lo

ur
en

ço
et

al
.

(2
00

3)
,

Jo
hn

so
n

an
d

M
c-

G
eo

ch
(1

99
7)

,
G

en
dr

ea
u

et
al

.
(1

99
4)

,T
ot

h
an

d
V

ig
o

(2
00

3)
G

ui
de

d
Lo

ca
lS

ea
rc

h
Pe

na
liz

in
g

so
lu

tio
n

fe
at

ur
es

,s
uc

h
th

at
we

es
ca

pe
lo

ca
lm

in
im

a
an

d
ob

ta
in

fe
as

ib
le

in
cu

be
nt

s

A
s

in
th

e
Lo

ca
lS

ea
rc

h
Vo

ud
ou

ris
an

d
Ts

an
g

(1
99

9)
M

ill
s

an
d

Ts
an

g
(2

00
0)

Ta
bu

Se
ar

ch
T

hr
ou

gh
ad

ap
tiv

e
m

em
or

y
cr

ea
t-

in
g

Ta
bu

lis
ts

in
or

de
r

to
ex

pl
or

e
pr

om
isi

ng
ar

ea
s

on
ly

.
Li

st
co

n-
ta

in
s

pa
st

or
fre

qu
en

t
m

ov
es

co
n-

sid
er

in
g

ta
ke

n
ac

tio
ns

R
es

po
ns

iv
e,

su
ch

th
at

se
ar

ch
ef

-
fo

rt
is

ta
ke

n
on

ly
to

pr
om

isi
ng

ar
-

ea
s

th
us

be
in

g
dy

na
m

ic

G
lo

ve
r

(1
98

6)
,

Ed
el

ka
m

p
an

d
Sc

hr
oe

dl
(2

01
1)

,
To

th
an

d
V

ig
o

(2
00

3)
,

R
oc

ha
t

an
d

Ta
ill

ar
d

(1
99

5)
,

X
u

an
d

K
el

ly
(1

99
6)

,
Bo

zk
ay

a
et

al
.

(2
00

3)
,

G
en

dr
ea

u
et

al
.

(1
99

4)
,

G
en

dr
ea

u
et

al
.

(2
00

1)
Si

m
ul

at
ed

A
nn

ea
lin

g
W

he
n

te
m

pe
ra

tu
re

is
hi

gh
,t

he
fo

-
cu

s
lie

s
on

ex
pl

or
at

io
n.

Bu
t

th
is

ha
pp

en
s

on
ly

sh
or

tly
,

su
ch

th
at

th
e

ex
pl

or
at

io
n

is
ra

th
er

ra
nd

om

O
nc

e
th

e
te

m
pe

ra
tu

re
ha

s
se

tt
le

d
an

d
co

ol
ed

,w
ef

oc
us

on
ex

pl
oi

tin
g

th
e

ac
tu

al
so

lu
tio

n
to

its
be

st

K
irk

pa
tr

ick
et

al
.

(1
98

3)
,

Č
er

nỳ
(1

98
5)

,
A

ar
ts

an
d

K
or

st
(1

98
8)

,
H

en
de

rs
on

et
al

.(
20

03
)

Po
pu

la
tio

n-
ba

se
d

Ev
ol

ut
io

na
ry

C
om

pu
ta

tio
n

T
hr

ou
gh

cr
os

so
ve

r
an

d
m

ut
at

io
n

op
er

at
or

s
Se

le
ct

in
g

th
e

fit
te

st
to

su
rv

iv
e

D
at

ta
et

al
.(

20
19

),
H

ol
la

nd
et

al
.

(1
99

2)
,S

et
tle

s
an

d
So

ul
e

(2
00

5)
,

M
ai

er
et

al
.

(2
01

8)
,

D
ré

o
et

al
.

(2
00

6)
Pa

rt
ic

le
Sw

ar
m

O
pt

im
iz

at
io

n
A

t
th

e
be

gi
nn

in
g

th
ro

ug
h

la
rg

e
ve

lo
ci

tie
s

an
d

ra
nd

om
in

iti
al

iz
a-

tio
n

po
sit

io
ns

O
nc

e
th

e
ve

lo
ci

tie
s

de
cr

ea
se

,
th

e
be

st
so

lu
tio

ns
ar

e
th

en
ex

pl
oi

te
d

by
co

ns
id

er
in

g
th

e
be

st
po

sit
io

ns
ac

hi
ev

ed

Eb
er

ha
rt

an
d

K
en

ne
dy

(1
99

5)
,

C
le

rc
(2

00
4)

,
G

en
dr

ea
u

an
d

Po
tv

in
(2

00
5)

,
G

ol
de

n
et

al
.

(2
00

8)
,

To
th

an
d

V
ig

o
(2

00
2)

,
Se

tt
le

s
an

d
So

ul
e

(2
00

5)
,

Pa
r-

so
po

ul
os

an
d

Vr
ah

at
is

(2
00

2)
A

nt
C

ol
on

y
O

pt
im

iz
at

io
n

U
po

n
la

rg
e

va
lu

es
of

α
,

th
e

ph
er

om
on

e
tr

ai
l

is
se

t
to

be
at

-
tr

ac
tiv

e
su

ch
th

at
th

e
an

t
di

ve
rt

s
its

ow
n

wa
y

to
th

is
ro

ut
e.

U
po

n
la

rg
e

va
lu

es
of

β
,a

nt
sm

ov
e

m
or

e
lib

er
al

ly
an

d
in

de
pe

nd
en

tly
in

or
de

r
to

fin
d

th
e

be
st

pa
th

D
or

ig
o

an
d

D
i

C
ar

o
(1

99
9)

,
G

os
s

et
al

.(
19

89
),

Bl
um

(2
00

5)
,

(C
ol

or
ni

et
al

.,
19

92
),

St
üt

-
zl

e
an

d
H

oo
s

(2
00

0)
,

D
or

ig
o

an
d

G
am

ba
rd

el
la

(1
99

7)
,M

on
te

-
m

an
ni

et
al

.(
20

05
)

A
rt

ifi
ci

al
Be

e
C

ol
on

y
Sc

ou
t

be
es

se
ar

ch
in

g
th

e
so

lu
tio

n
sp

ac
e

fo
r

fo
od

so
ur

ce
s

Em
pl

oy
ed

an
d

on
lo

ck
er

be
es

K
ar

ab
og

a
(2

00
5)

,
K

ar
ab

og
a

an
d

Ba
st

ur
k

(2
00

7)

Ta
bl

e
14

:
C

om
pa

ris
on

be
tw

ee
n

ex
pl

oi
ta

tio
n

an
d

ex
pl

or
at

io
n

of
th

e
so

lu
tio

n
sp

ac
e

be
tw

ee
n

M
et

ah
eu

ris
tic

s

121

B. CODE

B Code

The code can be easily implemented by cloning the git repository from https://github.
com/JonathanIgler/Urban-Logistics-Routing-Problem to the local machine. In the
following, we explain how to execute each file and additionally provide the codes in a
consecutive shaded box.

B.1 simulate_graphs.py

Execute file by parsing
1 $ python <path>/simulate_graphs.py --loc <path>

where <path> denotes the path to the directory where the results should be saved. The
directory should contain a folder called ”Data”.

1 """
2 Simulate locations
3 parser:
4 loc - path to save distance matrices
5 """
6

7 # import packages and functions
8 import argparse
9 import matplotlib.cm as cm

10 import matplotlib.pyplot as plt
11 import numpy as np
12 from random import random
13 from random import seed
14 from scipy.spatial import distance_matrix
15 import pickle
16

17 # arguments given in command line
18 parser = argparse.ArgumentParser(description='Simulate some distance

matrices.')
19 parser.add_argument('--loc', nargs='?', help='Path to save distance

matrices.')
20 args = parser.parse_args()
21 loc = args.loc
22

23 # define variables
24 seed(123)
25 num_graphs = 10
26 num_locations = [10,30,100]
27 location_area = [[0,100], [0,100]]
28

29

30 # randomly generate coordinates
31 coordinates = []

122

https://github.com/JonathanIgler/Urban-Logistics-Routing-Problem
https://github.com/JonathanIgler/Urban-Logistics-Routing-Problem

B. CODE

32 for k in range(len(num_locations)):
33 coordinates.append([])
34 for i in range(num_graphs):
35 coordinates[k].append([])
36 for j in range(num_locations[k]):
37 coordinates[k][i].append(
38 [random()*(location_area[0][1]-location_area[0][0])+
39 location_area[0][0],
40 random()*(location_area[1][1]-location_area[1][0])+
41 location_area[1][0]])
42

43 # plot exemplary graph
44 colors = cm.rainbow(np.linspace(0, 1, len(coordinates[0][0])))
45 x = [coordinates[0][0][i][0] for i in range(len(coordinates[0][0]))]
46 y = [coordinates[0][0][i][1] for i in range(len(coordinates[0][0]))]
47 plt.scatter(x, y, c=colors, s=100)
48 for i in range(len(coordinates[0][0])):
49 for j in range(len(coordinates[0][0])):
50 plt.plot([x[i],x[j]],[y[i],y[j]], 'k-', lw=0.1)
51

52 # include optimal route
53 opt_route = [0, 6, 1, 7, 8, 2, 4, 3, 9, 5, 0]
54 for i in opt_route[:-1]:
55 plt.arrow(x[opt_route[i]],y[opt_route[i]], x[opt_route[i+1]]-
56 x[opt_route[i]],y[opt_route[i+1]]-y[opt_route[i]], width =

0.05,
57 length_includes_head = True, head_width = 2, head_length= 2)
58 plt.savefig(args.loc + '/ex_graph.eps', format='eps')
59

60 # generate distance matrices
61 dist_matr = []
62 for k in range(len(num_locations)):
63 dist_matr.append([])
64 for i in range(num_graphs):
65 dist_matr[k].append(list(distance_matrix(coordinates[k][i],
66 coordinates[k][i])))
67

68

69 # save data
70 with open(loc + '/Data/dist_matr.pkl', 'wb') as output:
71 pickle.dump(dist_matr , output, pickle.HIGHEST_PROTOCOL)
72

73 with open(loc + '/Data/coords.pkl', 'wb') as output:
74 pickle.dump(coordinates , output, pickle.HIGHEST_PROTOCOL)
75

123

B. CODE

B.2 extract_API.py

In order to execute the following code, first request an Google Distance Matrix API key on
https://developers.google.com/maps/documentation/distance-matrix/start. Then,
execute the file by parsing

1 $ python <path>/extract_API.py --loc <path> --API_key <API_key> --
get_coor <get_coor>

into the command line. Again, <path> denotes the path to the directory where the files
are saved. Insert your API key in <API_key>. Eventually, set <get_coor> to True if
coordinates should be extracted instead of distances. False otherwise. Default is False.

1 """
2 Extract distance matrix from Google Distance Matrix API
3 parser:
4 loc - path where distance matrices are saved and results will be

saved
5 API_key - API key for Google Distance Matrix API
6 get_coor - True if coordinates should be extracted instead of

distances.
7 False otherwise. Default is False.
8 """
9

10 # import packages and functions
11 import argparse
12 import json
13 import pickle
14 import urllib.request
15 from urllib.request import FancyURLopener
16

17 # adjust the User Agent for opening URLs without string checking
18 class MyOpener(FancyURLopener):
19 version = 'User-Agent'
20

21 # arguments given in command line
22 parser = argparse.ArgumentParser(description='Extract real world data.')
23 parser.add_argument('--loc', nargs='?', help='Path where distance matrices

are saved.')
24 parser.add_argument('--API_key', nargs='?', help='API key for Google

Distance Matrix API.')
25 parser.add_argument('--get_coor', type=bool, help='True if coordinates

should be extracted instead of distances. False otherwise. Default is
False.', default = False)

26 loc = parser.parse_args().loc
27 API_key = parser.parse_args().API_key
28 get_coor = parser.parse_args().get_coor
29

30 # how to send requests
31 def send_request(origin_addresses , API_key, get_coor = False,

dest_addresses = None):

124

https://developers.google.com/maps/documentation/distance-matrix/start

B. CODE

32 """
33 Build and send request for the given origin and destination

addresses.
34 Code changed from https://developers.google.com/optimization/

routing/vrp#distance_matrix_api
35 """
36 def build_address_str(addresses):
37 # build a pipe-separated string of addresses
38 address_str = ''
39 for i in range(len(addresses) - 1):
40 address_str += addresses[i] + '|'
41 address_str += addresses[-1]
42 return address_str
43 # build request
44 if get_coor == False:
45 link = 'https://maps.googleapis.com/maps/api/distancematrix/json?

units=imperial'
46 origin_address_str = build_address_str(origin_addresses)
47 dest_address_str = build_address_str(dest_addresses)
48 link = link + '&origins=' + origin_address_str + '&destinations=' +

dest_address_str + '&mode=bicycling' + '&key=' + API_key
49 else:
50 link = 'https://maps.googleapis.com/maps/api/geocode/json?address='

+ origin_addresses + '&key=' + API_key
51

52 # send request
53 myopener = MyOpener()
54 page = myopener.open(link)
55 jsonResult = page.read()
56 response = json.loads(jsonResult)
57 #with urllib.request.urlopen(link) as url:
58 # jsonResult = url.read()
59 # response = json.loads(jsonResult)
60 # return
61 return response
62

63

64 # define data
65 data = {}
66 data["API_key"] = API_key
67 data['addresses'] = ['Koenigsworther+Pl.+1,+30167+Hannover',
68 # Conti-Campus # depot
69 'Ricklinger+Stadtweg+120,+30459+Hannover',
70 # Hochschule Hannover
71 'Expo+Plaza+2,+30539+Hannover',
72 # Hochschule Hannover Fakultät III
73 'Blumhardtstrasse+2,+30625+Hannover',
74 # Hochschule Hannover Fakultät V
75 'Welfengarten+1,+30167+Hannover',
76 # Leibniz Universität
77 'Callinstrasse+23,+30167+Hannover',

125

B. CODE

78 # Hauptmensa
79 'Herrenhaeuser+Str.+2,+30419+Hannover',
80 # Universitätsbereich Campus Herrenhausen
81 'Carl-Neuberg-Strasse+1,+30625+Hannover',
82 # MHH
83 'Holzmarkt+5,+30159+Hannover',
84 # Leibnizhaus
85 'Welfengarten+1A,+30167+Hannover',
86 # Marstallgebäude
87 'Welfengarten+1B,+30167+Hannover',
88 # TIB Naturwissenschaften
89 'Welfengarten+2C,+30167+Hannover',
90 # TIB Sozialwissenschaften
91 'Appelstrasse+4,+30167+Hannover',
92 # Insschtitut für theoretische Informatik
93 'Buenteweg+9,+30559+Hannover',
94 # Tiermedizinische Hochschule
95 'Neues+Haus+1,+30175+Hannover',
96 # Hochschule für Musik, Theater und Medien Hannover
97 'Freundallee+15,+30173+Hannover',
98 # FHDW
99 'Lister+Str.+18,+30163+Hannover',

100 # Fachhochschule des Mittelstands (FHM) - Campus
101 Hannover
102 'Schneiderberg+39,+30167+Hannover',
103 # Laboratorium für Nano- und Quantenengineering
104 'Klaus-Mueller-Kilian-Weg 2,+30167+Hannover',
105 # Ehemalige Bürgerschule
106 'An+der+Universitaet+2,+30823+Garbsen',
107 # Produktionstechnisches Zentrum Hannover
108 'Dorotheenstrasse+5,+30419+Hannover',
109 # Studentenwohnheim
110 'Herrenhaeuser+Str.+8,+30419+Hannover',
111 # Dekanat Fakultät für Architektur und Landschaft
112 'Herrenhaeuser+Str.+2,+30419+Hannover',
113 # Areal Gartenbau , Landschaftsarchitektur und
114 Umweltentwicklung
115 'Hanomagstrasse+8,+30449+Hannover',
116 # Hanomag-Gebäude
117 'Nienburger+Strasse+17,+30167+Hannover',
118 # Parkhaus
119 'Am+Hohen+Ufer+6,+30159+Hannover',
120 # Üstra-Gebäude
121 'Bismarckstrasse+2,+30173+Hannover',
122 # Pädagogische Hochschule
123 'Nienburger+Str.+1,+30167+Hannover',
124 # Klinkerbau Nienburger Straße
125 'Callinstrasse+3,+30167+Hannover',
126 # Chemiegebäude
127 'Schlosswender+Str.+1,+30159+Hannover',
128 # Areal Schlosswender Straße

126

B. CODE

129 'Appelstrasse+9A,+30167+Hannover',
130 # Institut für Baumechanik und Numerische Mechanik
131 'Callinstrasse+38,+30167+Hannover',
132 # Max-Planck-Institut für Gravitationsphysik
133 'Callinstrasse+34a,+30167+Hannover',
134 # Hannover Institute of Technology
135 'Appelstrasse+9,+30167+Hannover',
136 # Institute of Turbomachinery and Fluid Dynamics
137 'Appelstrasse+11,+30167+Hannover',
138 # Institut für Kontinuumsmechanik
139 'Callinstrasse+36,+30167+Hannover',
140 # Institut für Mehrphasenprozesse
141 'Callinstrasse+34,+30167+Hannover',
142 # Fakultät für Bauingenieurwesen und Geodäsie
143 'Appelstrasse+2,+30167+Hannover'
144 # Universität Hannover Learning Lab Lower Saxony
145]
146

147

148 # send requests
149 addresses = data["addresses"]
150

151 if get_coor == False:
152 ## Code changed from 'create_distance_matrix' from https://developers.

google.com/optimization/routing/vrp#distance_matrix_api
153

154 # set parameters
155 distance_matrix = []
156 max_elements = 100 # only 100 requests allowed per Distance Matrix API

request
157 num_addresses = len(addresses)
158 max_rows = max_elements // num_addresses
159 q, r = divmod(num_addresses , max_rows)
160 dest_addresses = addresses
161 distance_matrix = []
162

163 for i in range(q):
164 origin_addresses = addresses[i * max_rows: (i + 1) * max_rows]
165 response = send_request(origin_addresses , API_key, dest_addresses =

dest_addresses)
166 for row in response['rows']:
167 row_list = [row['elements'][j]['duration']['value'] for j in

range(len(row['elements']))]
168 distance_matrix.append(row_list)
169

170 # get the remaining remaining r rows
171 if r > 0:
172 origin_addresses = addresses[q * max_rows: q * max_rows + r]
173 response = send_request(origin_addresses , API_key, dest_addresses =

dest_addresses)
174 for row in response['rows']:

127

B. CODE

175 row_list = [row['elements'][j]['duration']['value'] for j in
range(len(row['elements']))]

176 distance_matrix.append(row_list)
177

178 # save data
179 with open(loc + '/Data/Han_distances.pkl', 'wb') as output:
180 pickle.dump(distance_matrix , output, pickle.HIGHEST_PROTOCOL)
181 else:
182 coor_matrix = []
183

184 for i in range(len(addresses)):
185 response = send_request(addresses[i], API_key, get_coor = True)
186 coor_matrix.append([[s['geometry']['location']['lat'] for s in

response['results']][0],
187 [s['geometry']['location']['lng'] for s in

response['results']][0]])
188

189 # save data
190 with open(loc + '/Data/Han_coords.pkl', 'wb') as output:
191 pickle.dump(coor_matrix , output, pickle.HIGHEST_PROTOCOL)

B.3 bnc.py

Execute the following code by parsing
1 $ python <path>/bnc.py --loc <path>

where <path> is defined as always.
1

2 """
3 Solve TSP with branch-and-cut algorithm
4 parser:
5 loc - path where distance matrices are saved and results will be

saved
6 """
7

8 # import packages and functions
9 import argparse

10 from mip.model import Model, xsum, minimize
11 from mip.constants import BINARY
12 import pickle
13 import time
14

15 # arguments given in command line
16 parser = argparse.ArgumentParser(description='Simulate some distance

matrices.')
17 parser.add_argument('--loc', nargs='?', help='Path to save distance

matrices.')
18 args = parser.parse_args()
19 loc = args.loc

128

B. CODE

20

21 # read in distance matrices
22 with open(loc + '/Data/dist_matr.pkl', 'rb') as f:
23 distances = pickle.load(f)
24

25 with open(loc + '/Data/Han_distances.pkl', 'rb') as f:
26 Han_distances = pickle.load(f)
27

28 # solve tsp problem for real world data
29 # code adapted and changed from
30 n = len(Han_distances)
31

32 model = Model()
33 x = [[model.add_var(var_type=BINARY) for j in range(n)] for i in range(n)]
34 y = [model.add_var() for i in range(n)]
35

36 model.objective = minimize(
37 xsum(Han_distances[i][j]*x[i][j] for j in range(n) for i in range(n)))
38

39 for i in range(n):
40 model += xsum(x[j][i] for j in range(n) if j != i) == 1
41 model += xsum(x[i][j] for j in range(n) if j != i) == 1
42

43 for i in range(1, n):
44 for j in [x for x in range(1, n) if x != i]:
45 model += y[i] - (n+1)*x[i][j] >= y[j] - n
46

47 start = time.time()
48 model.optimize(max = 30000)
49 end = time.time()
50

51 print('Hannover optimal distance:', model.objective_value)
52 print('Hannover bnc time:', end-start)
53

54

55 opt_dis = []
56 times = []
57 for i in range(len(distances)):
58 opt_dis.append([])
59 times.append([])
60 for j in range(len(distances)):
61 opt_dis[i].append([])
62 times[i].append([])
63

64 n = len(distances[i][j])
65

66 model = Model()
67 x = [[model.add_var(var_type=BINARY) for j in range(n)] for i in

range(n)]
68 y = [model.add_var() for i in range(n)]
69

129

B. CODE

70 model.objective = minimize(
71 xsum(Han_distances[i][j]*x[i][j] for j in range(n) for i in

range(n)))
72

73 for i in range(n):
74 model += xsum(x[j][i] for j in range(n) if j != i) == 1
75 model += xsum(x[i][j] for j in range(n) if j != i) == 1
76

77 for i in range(1, n):
78 for j in [x for x in range(1, n) if x != i]:
79 model += y[i] - (n+1)*x[i][j] >= y[j] - n
80

81 start = time.time()
82 model.optimize(max = 30000)
83 end = time.time()
84

85 opt_dis[i][j] = model.objective_value
86 times[i][j] = end-start
87

88 with open(loc + '/Results/dis_bnc.pkl', 'wb') as output:
89 pickle.dump(distances , output, pickle.HIGHEST_PROTOCOL)
90

91 with open(loc + '/Results/times_bnc.pkl', 'wb') as output:
92 pickle.dump(times, output, pickle.HIGHEST_PROTOCOL)

B.4 OR_tools.py

Execute file by parsing
1 $ python <path>/OR_tools.py --loc <path> --vehicles <num_vehicles > --Han <

use_hannover_data >

where <path> denotes the path to the directory where the results should be saved. The
directory should have a folder with the name ”Data” where the distance matrices were
saved and one with the name ”Results” which is empty. The placeholder <num_vehicles>
denotes the number of vehicles in the VRP. Default is set to 1 for the TSP. For this option,
you can also only write $ python <path>/OR_tools.py --loc <path> in the command
line. The last placeholder <use_hannover_data> should be set equal to True if the
Hannover real world data set should be used and to False if the simulated dataset should
be used. If no argument for --Han is given, the simulated data set is used by default.

1 """
2 Use OR tools as optimization algorithm
3 parser:
4 loc - path where distance matrices are saved and results will be

saved
5 vehicles - number of vehicles for VRP. Default is 1.

130

B. CODE

6 Han - True if the real world data should be used. False otherwise.
Default is False.

7 """
8

9 # import packages and functions
10 import argparse
11 from time import time
12 from ortools.constraint_solver import routing_enums_pb2
13 from ortools.constraint_solver import pywrapcp
14 import numpy as np
15 import pickle
16 from random import seed
17

18 # arguments given in command line
19 parser = argparse.ArgumentParser(description='Solve routing problems.')
20 parser.add_argument('--loc', nargs='?', help='Path where distance matrices

are saved.')
21 parser.add_argument('--vehicles', type=int, help='Number of vehicles.

Default is 1.', default=1)
22 parser.add_argument('--Han', type=bool, help='Boolean variable. True if

Hannover dataset instead of simulated data should be used. Default is
False.', default=False)

23 loc = parser.parse_args().loc
24 vehicles = parser.parse_args().vehicles
25 Han = parser.parse_args().Han
26

27 # load data
28 if Han == False:
29 with open(loc + '/Data/dist_matr.pkl', 'rb') as f:
30 dist_matr = pickle.load(f)
31 else:
32 with open(loc + '/Data/Han_distances.pkl', 'rb') as f:
33 dist_matr = pickle.load(f)
34

35 # distance callback
36 def distance_callback(from_index , to_index):
37 """
38 Returns the distance between the nodes 'from_index' and 'to_index'.
39 Code changed from https://developers.google.com/optimization/

routing/tsp
40 """
41 # convert from routing variable Index to distance matrix NodeIndex
42 from_node = manager.IndexToNode(from_index)
43 to_node = manager.IndexToNode(to_index)
44 # scale distance and round since OR tools only accept integers
45 distance = round(data['distance_matrix'][from_node][to_node]*100)
46 # return
47 return distance
48

49 def get_distance(num_vehicles , manager, routing, assignment):
50 """

131

B. CODE

51 Returns distance of solution route.
52 Code changed from print_solution from https://developers.google.com

/optimization/routing/vrp
53 """
54 max_route_distance = 0
55 # sum over distances over all vehicles
56 for vehicle_id in range(num_vehicles):
57 index = routing.Start(vehicle_id)
58 route_distance = 0
59 while not routing.IsEnd(index):
60 previous_index = index
61 index = assignment.Value(routing.NextVar(index))
62 route_distance += routing.GetArcCostForVehicle(
63 previous_index , index, vehicle_id)
64 max_route_distance = max(route_distance , max_route_distance)
65 # return
66 # scale distance back
67 return(max_route_distance/100)
68

69 # define problem
70 data = {}
71 data['num_vehicles'] = vehicles
72 data['depot'] = 0
73

74 metaheu = ['GREEDY_DESCENT', 'GUIDED_LOCAL_SEARCH', 'SIMULATED_ANNEALING',
75 'TABU_SEARCH']
76

77 seed(123)
78 if Han == False:
79 distances = np.zeros((len(dist_matr),len(dist_matr[0]),4))
80 times = np.zeros((len(dist_matr),len(dist_matr[0]),4))
81 for metaheu_ind in range(len(metaheu)):
82 for i in range(len(dist_matr)):
83 for j in range(len(dist_matr[i])):
84 data['distance_matrix'] = dist_matr[i][j]
85

86 ## following code changed from https://developers.google.
com/optimization/routing/vrp

87

88 # create the routing index manager
89 manager = pywrapcp.RoutingIndexManager(len(data['

distance_matrix']),
90 data['num_vehicles'

], data['depot'])
91

92 # create routing model
93 routing = pywrapcp.RoutingModel(manager)
94 transit_callback_index = routing.RegisterTransitCallback(

distance_callback)
95 routing.SetArcCostEvaluatorOfAllVehicles(

transit_callback_index)

132

B. CODE

96

97 # add distance constraint
98 if vehicles > 1:
99 routing.AddDimension(

100 transit_callback_index ,
101 0, # no slack
102 20000000, # vehicle maximum travel distance
103 True, # start cumul to zero
104 'Distance') # dimension name
105 distance_dimension = routing.GetDimensionOrDie('

Distance')
106 distance_dimension.SetGlobalSpanCostCoefficient(1000)
107

108 # change the metahueristic
109 search_parameters = pywrapcp.DefaultRoutingSearchParameters

()
110 exec('search_parameters.local_search_metaheuristic = '
111 + '(routing_enums_pb2.LocalSearchMetaheuristic.'
112 + str(metaheu[metaheu_ind]) + ')')
113 search_parameters.time_limit.seconds = 30
114 search_parameters.log_search = True
115

116 # solve problem and stop the time
117 start = time()
118 assignment = routing.SolveWithParameters(search_parameters)
119 end = time()
120

121 if assignment:
122 distances[i][j][metaheu_ind] = get_distance(data['

num_vehicles'], manager, routing, assignment)
123 times[i][j][metaheu_ind] = end - start
124 else:
125 distances = np.zeros((4))
126 times = np.zeros((4))
127 for metaheu_ind in range(len(metaheu)):
128 data['distance_matrix'] = dist_matr
129

130 ## following code changed from https://developers.google.com/
optimization/routing/vrp

131

132 # create the routing index manager
133 manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix'])

,
134 data['num_vehicles'], data['

depot'])
135

136 # create routing model
137 routing = pywrapcp.RoutingModel(manager)
138 transit_callback_index = routing.RegisterTransitCallback(

distance_callback)
139 routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

133

B. CODE

140

141 # add distance constraint
142 if vehicles > 1:
143 routing.AddDimension(
144 transit_callback_index ,
145 0, # no slack
146 20000, # vehicle maximum travel distance
147 True, # start cumul to zero
148 'Distance') # dimension name
149 distance_dimension = routing.GetDimensionOrDie('Distance')
150 distance_dimension.SetGlobalSpanCostCoefficient(1000)
151

152 # change the metahueristic
153 search_parameters = pywrapcp.DefaultRoutingSearchParameters()
154 exec('search_parameters.local_search_metaheuristic = '
155 + '(routing_enums_pb2.LocalSearchMetaheuristic.'
156 + str(metaheu[metaheu_ind]) + ')')
157 search_parameters.time_limit.seconds = 30
158 search_parameters.log_search = True
159

160 # solve problem and stop the time
161 start = time()
162 assignment = routing.SolveWithParameters(search_parameters)
163 end = time()
164

165 if assignment:
166 distances[metaheu_ind] = get_distance(data['num_vehicles'],

manager, routing, assignment)
167 times[metaheu_ind] = end - start
168

169 # save results
170 if Han == False:
171 with open(loc + '/Results/distances' + str(vehicles) + '.pkl', 'wb') as

output:
172 pickle.dump(distances , output, pickle.HIGHEST_PROTOCOL)
173

174 with open(loc + '/Results/times' + str(vehicles) + '.pkl', 'wb') as
output:

175 pickle.dump(times, output, pickle.HIGHEST_PROTOCOL)
176 else:
177 with open(loc + '/Results/Han_distances' + str(vehicles) + '.pkl', 'wb'

) as output:
178 pickle.dump(distances , output, pickle.HIGHEST_PROTOCOL)
179

180 with open(loc + '/Results/Han_times' + str(vehicles) + '.pkl', 'wb') as
output:

181 pickle.dump(times, output, pickle.HIGHEST_PROTOCOL)

134

B. CODE

B.5 show_OR_tools_results.py

In the following file, we display the code for illustrating the results obtained in OR_tools.py.
For execution, type

1 $ python <path>/show_OR_tools_results.py --loc <path>

with path as before in the command line.
1 """
2 Read in the results of OR_tools.py for simulated and real world data
3 and present them graphically
4 parser:
5 loc - path where distance matrices are saved and results will be

saved
6 """
7

8 # import packages and functions
9 import argparse

10 from matplotlib.ticker import FormatStrFormatter
11 import matplotlib.pyplot as plt
12 import numpy as np
13 import pickle
14

15 # arguments given in command line
16 parser = argparse.ArgumentParser(description='Simulate some distance

matrices.')
17 parser.add_argument('--loc', nargs='?', help='Path to save distance

matrices.')
18 args = parser.parse_args()
19 loc = args.loc
20

21 # read in results
22 distances = []
23 Han_distances = []
24 times = []
25 Han_times = []
26 for i in range(5):
27 with open(loc + '/Results/distances' + str(i+1) + '.pkl', 'rb') as f:
28 s = pickle.load(f)
29 distances.append(s)
30 with open(loc + '/Results/Han_distances' + str(i+1) + '.pkl', 'rb') as

f:
31 s = pickle.load(f)
32 Han_distances.append(s)
33 with open(loc + '/Results/times' + str(i+1) + '.pkl', 'rb') as f:
34 s = pickle.load(f)
35 times.append(s)
36 with open(loc + '/Results/Han_times' + str(i+1) + '.pkl', 'rb') as f:
37 s = pickle.load(f)
38 Han_times.append(s)
39

135

B. CODE

40 metaheu = ['Greedy Descent', 'Guided Local Search', 'Simulated Annealing',
41 'Tabu Search']
42

43

44 # plot results on computational efficienccy on the real world data
45 ax1 = plt.subplot(211)
46 ax2 = plt.subplot(212)
47 plt.subplots_adjust(hspace=0.1)
48

49 for i in range(4):
50 ax1.plot([1,2,3,4,5],[Han_times[j][i] for j in range(5)], label =

metaheu[i])
51 ax2.plot([1,2,3,4,5],[Han_times[j][i] for j in range(5)], label =

metaheu[i])
52

53 min_plt = min([min(Han_times[j]) for j in range(len(Han_times))])
54 max_plt = max([max(Han_times[j]) for j in range(len(Han_times))])
55 ax1.set_ylim(29.999, 30.003)
56 ax2.set_ylim(0.9*min_plt, 1.55)
57

58 ax1.spines['bottom'].set_visible(False)
59 ax2.spines['top'].set_visible(False)
60

61 ax1.tick_params(axis='x', which='both', bottom=False, top=False,
labelbottom=False)

62 ax1.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
63 plt.xticks([1,2,3,4,5])
64

65 d = .01
66 kwargs = dict(transform=ax1.transAxes , color='k', clip_on=False)
67 ax1.plot((1-d,1+d), (-d,+d), **kwargs)
68 ax1.plot((-d,+d),(-d,+d), **kwargs)
69 kwargs.update(transform=ax2.transAxes)
70 ax2.plot((-d,+d), (1-d,1+d), **kwargs)
71 ax2.plot((1-d,1+d), (1-d,1+d), **kwargs)
72

73 lgd = plt.legend(loc=(1.04,1.5), ncol=1)
74

75 plt.xlabel('Number of bicycles')
76 plt.ylabel(' Elapsed time in seconds',

labelpad=25)
77

78 plt.savefig('Han_times.eps', format='eps', bbox_extra_artists=(lgd,),
bbox_inches='tight')

79

80

81 # plot results on distances on the real world data
82 for i in range(4):
83 plt.plot([1,2,3,4,5],[Han_distances[j][i] for j in range(5)], label =

metaheu[i])
84

136

B. CODE

85 plt.xticks([1,2,3,4,5])
86 plt.legend()
87 plt.ylabel('Longest time needed per bicycle in seconds')
88 plt.xlabel('Number of bicycles')
89

90 plt.savefig(loc + '\Results\Han_distances.eps', format='eps')
91

92

93 # write table with results on distances on the real world data
94 Han_dis_arr = np.zeros((4,5))
95 for i in range(4):
96 Han_dis_arr[i,:] = [Han_distances[j][i] for j in range(5)]
97 np.savetxt(loc + "\Results\Han_dis_arr.csv", Han_dis_arr , delimiter=' & ',

fmt='%i', newline=' \\\\\n')
98

99

100 # average results of simulated data
101 ave_distances = []
102 ave_times = []
103 for i in range(len(distances)):
104 ave_distances.append([])
105 ave_times.append([])
106 for j in range(len(distances[i])):
107 ave_distances[i].append([])
108 ave_times[i].append([])
109 for k in range(4):
110 ave_distances[i][j].append(np.mean([distances[i][j][l][k] for l

in range(10)]))
111 ave_times[i][j].append(np.mean([times[i][j][l][k] for l in

range(10)]))
112

113

114 # write table with results on distances on the simulated data
115 dis_arr = np.zeros((4,3))
116 time_arr = np.zeros((4,3))
117 for i in range(4):
118 for j in range(3):
119 dis_arr[i,j] = ave_distances[0][j][i]
120 time_arr[i,j] = ave_times[0][j][i]
121

122 np.savetxt(loc + "\Results\dis_arr.csv", dis_arr, delimiter=' & ', fmt='%.2
f', newline=' \\\\\n')

123 np.savetxt(loc + "\Results\time_arr.csv", time_arr, delimiter=' & ', fmt='
%.2f', newline=' \\\\\n')

124

125

126 # plot results on distances on simulated data
127 for n_vehicles in range(len(ave_distances)):
128 plt.subplot(3,2,n_vehicles+1)
129 for i in range(4):
130 if n_vehicles == 0:

137

B. CODE

131 plt.plot([10,30,100], [ave_distances[n_vehicles][j][i]/100 for
j in range(3)], label = metaheu[i])

132 else:
133 plt.plot([10,30,100], [ave_distances[n_vehicles][j][i] for j in

range(3)], label = metaheu[i])
134 plt.tight_layout()
135 plt.legend(loc=(1.4,0), prop={'size': 8})
136 plt.savefig(loc + '\Results\distances.eps', format='eps')
137

138 # plot results on computational efficiency on simulated data
139 for n_vehicles in range(len(ave_times)):
140 plt.subplot(3,2,n_vehicles+1)
141 for i in range(4):
142 if n_vehicles == 4:
143 plt.plot([10,30,100], [ave_times[n_vehicles][j][i]/100 for j in

range(3)], label = metaheu[i])
144 else:
145 plt.plot([10,30,100], [ave_times[n_vehicles][j][i] for j in

range(3)], label = metaheu[i])
146 plt.tight_layout()
147 plt.legend(loc=(1.4,0), prop={'size': 8})
148 plt.savefig(loc + '\Results\times.eps', format='eps')

B.6 aco.py

Execute file by parsing
1 $ python <path>/aco.py --loc <path>

where <path> is defined as before.
1 """
2 Try out other optimizers on the TSP
3 parser:
4 loc - path where distance matrices are saved and results will be

saved
5 """
6

7 # import packages and functions
8 import argparse
9 from collections import defaultdict

10 import math
11 import numpy as np
12 import pants
13 import pickle
14 from random import random
15 from random import seed
16 import time
17

18 # make variables global
19 global Han_coordinates

138

B. CODE

20 global Han_distances
21

22 # arguments given in command line
23 parser = argparse.ArgumentParser(description='Extract real world data.')
24 parser.add_argument('--loc', nargs='?', help='Path where distance matrices

and coordiantes are saved.')
25 args = parser.parse_args()
26 loc = args.loc
27

28 # read in coordinate data
29 with open(loc + '/Data/coords.pkl', 'rb') as f:
30 coordinates = pickle.load(f)
31

32 with open(loc + '/Data/Han_coords.pkl', 'rb') as f:
33 Han_coordinates = pickle.load(f)
34

35

36 # read in distance data
37 with open(loc + '/Data/dist_matr.pkl', 'rb') as f:
38 distances = pickle.load(f)
39

40 with open(loc + '/Data/Han_distances.pkl', 'rb') as f:
41 Han_distances = pickle.load(f)
42

43

44 # change lists to tuples
45 for i in range(len(Han_coordinates)):
46 Han_coordinates[i] = tuple([int((Han_coordinates[i][0]-52)*10000),int((

Han_coordinates[i][1]-9)*10000)])
47 for i in range(len(coordinates)):
48 for j in range(len(coordinates[i])):
49 for k in range(len(coordinates[i][j])):
50 coordinates[i][j][k] = tuple(coordinates[i][j][k])
51

52 # delete duplicates
53 def list_duplicates(l):
54 """
55 Return index of duplicate values in list 'seq'
56 adapted and changed from https://stackoverflow.com/questions/
57 5419204/index-of-duplicates -items-in-a-python-list
58 """
59 d = defaultdict(list)
60 for value,key in enumerate(l):
61 d[key].append(value)
62 return ((key,locs) for key,locs in d.items() if len(locs)>1)
63

64 duplicates =[]
65 for dup in sorted(list_duplicates(Han_coordinates)):
66 duplicates.append(Han_coordinates)
67

68 del(Han_coordinates[dup[1][0]])

139

B. CODE

69

70 # define length function
71 def euclidean(a, b):
72 return math.sqrt(pow(a[1] - b[1], 2) + pow(a[0] - b[0], 2))
73

74 def google_api_distance(a, b):
75 return Han_distances[Han_coordinates.index(tuple(a))][Han_coordinates.

index(tuple(b))]
76

77 # solve model
78 seed(123)
79 ## following code changed from acc to https://pypi.org/project/ACO-Pants/
80 world = pants.World(Han_coordinates , google_api_distance)
81 solver = pants.Solver()
82 start = time.time()
83 solution = solver.solve(world)
84 end = time.time()
85 print('Han_distance = ', solution.distance)
86 print('Han_time = ', end-start)
87

88 distances = []
89 times = []
90 for i in range(len(coordinates)):
91 distances.append([])
92 times.append([])
93 for j in range(len(coordinates[i])):
94 distances[i].append([])
95 times[i].append([])
96 world = pants.World(coordinates[i][j], euclidean)
97 solver = pants.Solver()
98 start = time.time()
99 solution = solver.solve(world)

100 end = time.time()
101 distances[i][j] = solution.distance
102 times[i][j] = end - start
103

104 # save results
105 with open(loc + '/Results/distances_ants.pkl', 'wb') as output:
106 pickle.dump(distances , output, pickle.HIGHEST_PROTOCOL)
107

108 with open(loc + '/Results/times_ants.pkl', 'wb') as output:
109 pickle.dump(times, output, pickle.HIGHEST_PROTOCOL)

B.7 run_gnowee.py

In order to run Gnowee, please download or clone the git repository https://github.
com/SlaybaughLab/Gnowee/ to the local machine. We run the travelimg salesman prob-
lem in the file gnowee.py. This file has to be saved in the src folder of the gnowee master.

140

https://github.com/SlaybaughLab/Gnowee/
https://github.com/SlaybaughLab/Gnowee/

B. CODE

Further, we add the line
1 self.optimum = ProblemParameters.optimum

to __init__ function of the module ”Gnowee/src/GnoweeHeuristics”. The code can now
be executed by

1 $ python <path>/Gnowee/src/run_gnowee.py --loc <path>

where <path> is defined as before.
1 """
2 Run the Gnowee algorithm based on the git repository provided by the

authors.
3 parser:
4 loc - path where distance matrices are saved and results will be

saved
5 """
6

7 # import packages and functions
8 import argparse
9 from collections import defaultdict

10 import Gnowee
11 from ObjectiveFunction import ObjectiveFunction
12 from GnoweeUtilities import ProblemParameters
13 from GnoweeHeuristics import GnoweeHeuristics
14 import numpy as np
15 import pickle
16 import time
17 from TSP import TSP
18

19 # arguments given in command line
20 parser = argparse.ArgumentParser(description='Simulate some distance

matrices.')
21 parser.add_argument('--loc', nargs='?', help='Path to save distance

matrices.')
22 args = parser.parse_args()
23 loc = args.loc
24

25 # read in coordinate data
26 with open(loc + '/Data/coords.pkl', 'rb') as f:
27 coordinates = pickle.load(f)
28

29 with open(loc + '/Data/Han_coords.pkl', 'rb') as f:
30 Han_coordinates = pickle.load(f)
31

32 # change lists to tuples
33 for i in range(len(Han_coordinates)):
34 Han_coordinates[i] = tuple([int((Han_coordinates[i][0]-52)*10000),int((

Han_coordinates[i][1]-9)*10000)])
35

36 # delete duplicates

141

B. CODE

37 def list_duplicates(l):
38 """
39 Return index of duplicate values in list 'seq'
40 adapted and changed from https://stackoverflow.com/questions/
41 5419204/index-of-duplicates -items-in-a-python-list
42 """
43 d = defaultdict(list)
44 for value,key in enumerate(l):
45 d[key].append(value)
46 return ((key,locs) for key,locs in d.items() if len(locs)>1)
47

48 duplicates =[]
49 for dup in sorted(list_duplicates(Han_coordinates)):
50 duplicates.append(Han_coordinates)
51

52 del(Han_coordinates[dup[1][0]])
53

54 # create TSP objects
55 file = open(loc + '/Data/Han_coords.tsp','w')
56 file.write('NAME : Han_coords\n')
57 file.write('COMMENT : Real world data\n')
58 file.write('TYPE : TSP\n')
59 file.write('DIMENSION : ' + str(len(Han_coordinates)) + '\n')
60 file.write('OPTIMUM : 13041.0\n')
61 file.write('EDGE_WEIGHT_TYPE : EUC_2D\n')
62 file.write('NODE_COORD_SECTION\n')
63 txt_coords = ''
64 for i in range(len(Han_coordinates)):
65 file.write(str(i) + ' ' + str(Han_coordinates[i][0]) + ' ' + str(

Han_coordinates[i][1]) + '\n')
66 file.write('EOF')
67 file.close()
68

69 # define optimization problem type
70 gh = GnoweeHeuristics()
71 tspProb = TSP()
72 tspProb.read_tsp(loc +'/Data/Han_coords.tsp')
73 tspProb.build_prob_params(gh)
74

75 # convergence parameters
76 gh.maxGens = 750
77 gh.stallLimit = 15000
78 gh.optConTol = 0.1
79

80 # optimization
81 start = time.time()
82 (timeline) = Gnowee.main(gh)
83 print(time.time()-start)
84 print(timeline[-1].fitness)
85

86

142

B. CODE

87 distances = []
88 times = []
89 for i in range(len(coordinates)):
90 distances.append([])
91 times.append([])
92 for j in range(len(coordinates[i])):
93 distances[i].append([])
94 times[i].append([])
95

96 # create TSP objects
97 file = open(loc + '/Data/coords' + str(i) + str(j) + '.tsp','w')
98 file.write('NAME : coords' + str(i) + str(j) +'\n')
99 file.write('COMMENT : Simulated data\n')

100 file.write('TYPE : TSP\n')
101 file.write('DIMENSION : ' + str(len(coordinates[i][j])) + '\n')
102 file.write('OPTIMUM : 0.0\n')
103 file.write('EDGE_WEIGHT_TYPE : EUC_2D\n')
104 file.write('NODE_COORD_SECTION\n')
105 txt_coords = ''
106 for k in range(len(coordinates[i][j])):
107 file.write(str(k) + ' ' + str(coordinates[i][j][k][0]) + ' ' +

str(Han_coordinates[i][1]) + '\n')
108 file.write('EOF')
109 file.close()
110

111 # define optimization problem type
112 gh = GnoweeHeuristics()
113 tspProb = TSP()
114 tspProb.read_tsp(loc + '/Data/coords' + str(i) + str(j) + '.tsp')
115 tspProb.build_prob_params(gh)
116

117 # convergence parameters
118 gh.maxGens = 750
119 gh.stallLimit = 15000
120 gh.optConTol = 0.1
121

122 # optimization
123 start = time.time()
124 (timeline) = Gnowee.main(gh)
125 times[i][j] = time.time()-start
126 distances[i][j] = timeline[-1].fitness
127

128 # save results
129 with open(loc + '/Results/distances_gnowee.pkl', 'wb') as output:
130 pickle.dump(distances , output, pickle.HIGHEST_PROTOCOL)
131

132 with open(loc + '/Results/times_gnowee.pkl', 'wb') as output:
133 pickle.dump(times, output, pickle.HIGHEST_PROTOCOL)
134

135 # average results of simulated data
136 ave_distances = []

143

B. CODE

137 ave_times = []
138 for i in range(len(distances)):
139 ave_distances.append(np.mean(distances[i]))
140 ave_times.append(np.mean(times[i]))
141 print(ave_distances)
142 print(ave_times)

B.8 learnheuristic.py

In order to run the learnheuristic proposed by Kool et al. (2018), please download or
clone the git repository https://github.com/wouterkool/attention-learn-to-route
to the local machine. In the file generate_vrp_data.py we redefine the function generate_vrp_data
starting in line 10 to

1 def generate_vrp_data(dataset_size , vrp_size):
2 CAPACITIES = {
3 10: 100000., # changed
4 30: 100000., # changed
5 100: 100000. # changed
6 }
7 return list(zip(
8 np.random.uniform(size=(dataset_size , 2)).tolist(), # Depot

location
9 np.random.uniform(size=(dataset_size , vrp_size, 2)).tolist(), #

Node locations
10 np.random.randint(1, 10, size=(dataset_size , vrp_size)).tolist(),

Demand, uniform integer 1 ... 9
11 np.full(dataset_size , CAPACITIES[vrp_size]).tolist() # Capacity ,

same for whole dataset
12))

in order to ensure that the capacity constraint does not limit the solution space. Next, in
the file problems/vrp/problem_vrp.py we change the return statement (starting in line
50) of the VRP.get_costs() function to

1 # Length is distance (L2-norm of difference) of each next location
to its prev and of first and last to depot

2 return (
3 torch.cat(((d[:, 1:] - d[:, :-1]).norm(p=2, dim=2),
4 (d[:, 0] - dataset['depot']).norm(p=2, dim=1) # Depot to

first
5 (d[:, -1] - dataset['depot']).norm(p=2, dim=1)) # Last to

depot, will be 0 if depot is last
6), 1).max(1)[0]
7), None

In bash, then run
1 $ python <path>/attention -learn-to-route-master/generate_data.py
2 --problem tsp --name validation --graph_sizes [10,30,38,100] --seed 321

144

https://github.com/wouterkool/attention-learn-to-route

B. CODE

to generate the relevant validation data. The placeholder <path> denotes the file path
to the repository of Kool et al. (2018). The models are now trained with

1 $ python <path>/run.py --graph_size <nr> --baseline rollout --run_name 'tsp
<nr>_rollout ' --val_dataset data/tsp/tsp<nr>_validation_seed321.pkl

2 $ python <path>/run.py --graph_size <nr> --baseline rollout --run_name 'tsp
<nr>_rollout ' --val_dataset data/vrp/vrp<nr>_validation_seed321.pkl

where <nr> is in {10, 30, 38, 100}. For testing, execute
1 $ python eval.py data/<test>.pkl --model pretrained/tsp_<nr> --

decode_strategy greedy --seed 123
2 $ python eval.py data/<test>.pkl --model pretrained/vrp_<nr> --

decode_strategy greedy --seed 123

where <test> is the name of the test data without extension. For generating the test
datasets, run the following Python code with

1 $ python <path>/learnheuristic.py --loc <path>

1 """
2 Create distance matrices as required for the learnheuristic of Kool et

al. (2019)
3 parser:
4 loc - path where distance matrices are saved and results will be

saved
5 """
6 # import packages and functions
7 import argparse
8 import pickle
9

10 # arguments given in command line
11 parser = argparse.ArgumentParser(description='Create data for

learnheuristics.')
12 parser.add_argument('--loc', nargs='?', help='Path where distance matrices

are saved.')
13 loc = parser.parse_args().loc
14

15 with open(loc + '/Data/dist_matr.pkl', 'rb') as f:
16 dist_matr = pickle.load(f)
17

18 nr_nodes = [10,30,100]
19 for i in range(len(dist_matr)):
20 nr = nr_nodes[i]
21 with open('data/dist_matr_' + str(nr) + '.pkl', 'wb') as output:
22 pickle.dump(dist_matr[i], output, pickle.HIGHEST_PROTOCOL)

B.9 requirements.txt

Recent versions of several packages such as numpy, OR-tools, and pyswarm are required.
Before executing the code, please install the packages as listed in the file requirements.txt

145

B. CODE

using the following command:
1 $ pip install -r requirements.txt

where requirements.txt is given as follows:
1 absl-py==0.8.0
2 ACO-Pants==0.5.2
3 alabaster==0.7.12
4 appnope==0.1.0
5 asn1crypto==0.24.0
6 astor==0.8.0
7 astroid==2.2.5
8 attrs==19.1.0
9 Babel==2.7.0

10 backcall==0.1.0
11 bleach==3.1.0
12 certifi==2019.6.16
13 cffi==1.12.3
14 chardet==3.0.4
15 Click==7.0
16 cloudpickle==1.2.2
17 cryptography==2.7
18 cycler==0.10.0
19 decorator==4.4.0
20 defusedxml==0.6.0
21 docutils==0.15.2
22 entrypoints==0.3
23 future==0.17.1
24 gast==0.3.2
25 google-pasta==0.1.7
26 grpcio==1.24.0
27 h5py==2.10.0
28 idna==2.8
29 imagesize==1.1.0
30 ipykernel==5.1.2
31 ipython==7.8.0
32 ipython-genutils==0.2.0
33 ipywidgets==7.5.1
34 isort==4.3.21
35 jedi==0.15.1
36 Jinja2==2.10.1
37 joblib==0.13.2
38 jsonschema==3.0.2
39 jupyter==1.0.0
40 jupyter-client==5.3.1
41 jupyter-console==6.0.0
42 jupyter-core==4.5.0
43 Keras-Applications==1.0.8
44 Keras-Preprocessing==1.1.0
45 keyring==18.0.0
46 kiwisolver==1.1.0

146

B. CODE

47 lazy-object-proxy==1.4.2
48 Markdown==3.1.1
49 MarkupSafe==1.1.1
50 matplotlib==3.1.1
51 mccabe==0.6.1
52 mip==1.4.2
53 mistune==0.8.4
54 more-itertools==7.2.0
55 nbconvert==5.5.0
56 nbformat==4.4.0
57 networkx==2.3
58 notebook==6.0.1
59 numpy==1.17.2
60 numpydoc==0.9.1
61 ortools==7.3.7083
62 packaging==19.1
63 pandocfilters==1.4.2
64 parso==0.5.1
65 path.py==10.6
66 pexpect==4.7.0
67 pickleshare==0.7.5
68 Pillow==6.1.0
69 prometheus -client==0.7.1
70 prompt-toolkit==2.0.9
71 protobuf==3.9.1
72 psutil==5.6.3
73 ptyprocess==0.6.0
74 PuLP==1.6.10
75 pybnb==0.6.1
76 pycodestyle==2.5.0
77 pycparser==2.19
78 pyflakes==2.1.1
79 Pygments==2.4.2
80 pylint==2.3.1
81 pyOpenSSL==19.0.0
82 pyparsing==2.4.2
83 pyrsistent==0.14.11
84 PySocks==1.7.0
85 pyswarms==1.1.0
86 python-dateutil==2.8.0
87 pytz==2019.2
88 PyYAML==5.1.2
89 pyzmq==18.1.0
90 QtAwesome==0.5.7
91 qtconsole==4.5.5
92 QtPy==1.9.0
93 requests==2.22.0
94 rope==0.14.0
95 scikit-learn==0.21.3
96 scipy==1.3.1
97 seed==0.11.3

147

B. CODE

98 Send2Trash==1.5.0
99 sip==4.19.13

100 six==1.12.0
101 sklearn==0.0
102 snowballstemmer==1.9.0
103 sortedcontainers==2.1.0
104 Sphinx==2.1.2
105 sphinxcontrib -applehelp==1.0.1
106 sphinxcontrib -devhelp==1.0.1
107 sphinxcontrib -htmlhelp==1.0.2
108 sphinxcontrib -jsmath==1.0.1
109 sphinxcontrib -qthelp==1.0.2
110 sphinxcontrib -serializinghtml==1.1.3
111 spyder==3.3.6
112 spyder-kernels==0.5.1
113 tensorboard==1.14.0
114 tensorboard -logger==0.1.0
115 tensorflow==1.14.0
116 tensorflow -estimator==1.14.0
117 termcolor==1.1.0
118 terminado==0.8.2
119 testpath==0.4.2
120 torch==1.2.0
121 torchvision==0.4.0
122 tornado==6.0.3
123 tqdm==4.36.1
124 traitlets==4.3.2
125 tsp==0.0.6
126 tsplib95==0.4.0
127 urllib3==1.24.2
128 wcwidth==0.1.7
129 webencodings==0.5.1
130 Werkzeug==0.16.0
131 widgetsnbextension==3.5.1
132 wrapt==1.11.2
133 wurlitzer==1.0.3

148

Ehrenwörtliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der
Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche
kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegt wurde.

Hannover, den 30. September 2019 (Jonathan Christopher Igler)

	List of Tables
	List of Figures
	Glossary
	Introduction and Motivation
	A Machine Learning View on Logistic Solutions
	Aim of this Paper
	Thesis Structure

	Research Design
	Combinatorial Optimization Problems
	Introduction to Logistics Problems
	Relation to Graph Theory
	Traveling Salesman Problem
	Vehicle Routing Problem
	Facility Location Problem
	Location Routing Problem
	Single Shortest Path Problem

	Exact Methods
	Branch-and-Bound Methods
	Branch-and-Cut Methods

	Heuristics
	Constructive Heuristics
	Improvement Heuristics

	Classification Scheme
	Metaheuristics
	Introduction and Basic Notations
	Individual-based Metaheuristics
	Population-based Metaheuristics

	Hybrids
	Collaborative Hybrids
	Integrative Hybrids
	Other Hybrids
	Gnowee
	Concluding Remarks

	Statistical Learning Methods
	Machine Learning
	Reinforcement Learning
	Ant-Q

	Learnheuristics
	Hyperheuristics
	Specifically-located Hybridizations
	Neural Networks for Learnheuristics

	Experimental Setup
	Problem Definition
	Dataset
	Methods
	Evaluation Criteria
	Further Implementation Details

	Results
	Simulated Data
	Real World Dataset

	Discussion
	Future Challenges and Opportunities in Urban Logistics
	Conclusion
	Results
	Outlook

	References
	Appendix
	Code
	simulate_graphs.py
	extract_API.py
	bnc.py
	OR_tools.py
	show_OR_tools_results.py
	aco.py
	run_gnowee.py
	learnheuristic.py
	requirements.txt

	Ehrenwörtliche Erklärung

